• <option id="immmk"></option>
  • <noscript id="immmk"><kbd id="immmk"></kbd></noscript>

    Nature系列綜述:mRNA納米醫學新時代

    自20世紀90年代初以來,遺傳學(Genetics)和納米醫學(Nanomedicine)的交叉已經在臨床中找到了一席之地,并成為了過去十年來的游戲規則改變者之一,通過快速開發急需的治療平臺,在對抗從癌癥到傳染病、遺傳疾病等方面擁有巨大希望。 mRNA新冠疫苗的成功開發和廣泛接種,為阻止新冠大流行做出了巨大貢獻,這是遺傳學和納米醫學交叉領域數十年研究進展的一座豐碑,也開啟了mRNA疫苗技術和制造的新時代,這一交叉也將作為科學和醫學研究中最偉大的成就之一載入史冊。 當遺傳學與納米醫學相遇 在遺傳學的發展史上,有這許多熠熠生輝的科學家的名字。首先是孟德爾,他提出了一個新穎的概念——遺傳因子具有顆粒性,這種遺傳因子此后被命名為基因(Gene)。二十世紀下半葉,法國遺傳學家 Jér?me Lejeune 發現染色體異常導致唐氏綜合征,這也開創了醫學細胞遺傳學。最重要的是,1953年,詹姆斯·沃森、弗朗西斯·克里克以及羅莎琳德·......閱讀全文

    mRNA納米顆粒竟然可以恢復p53???

      在一項新的研究中,利用納米技術的進步,來自美國布萊根婦女醫院、中國浙江大學和杭州師范大學等研究機構的研究人員發現恢復p53不僅會延遲缺乏p53的肝癌細胞和肺癌細胞的生長,而且還可能讓腫瘤對稱為mTOR抑制劑的癌癥藥物變得更敏感。相關研究結果近期發表在Science Translational M

    我國科學家開發新型抗癌mRNA納米疫苗

      信使RNA(mRNA)疫苗可實現安全高效的免疫,是一種新型癌癥免疫療法,但受到多重遞送障礙的限制,如mRNA被快速清除、細胞膜和核內體的磷脂雙分子層限制其胞內遞送、依賴佐劑誘導強烈的免疫反應等。納米顆粒有望保護mRNA免受降解,并通過淋巴管將mRNA傳遞到淋巴結。然而,大多數納米顆粒經細胞內吞到

    納米藥物制備系統在mRNA疫苗研發中的應用

    早在18世紀,英國醫生愛德華琴納(Edward Jenner)率先發現接種牛痘可以預防天花。隨后在漫長的醫學科學發展史上,科學家們陸續通過各種疫苗的研制戰勝了脊髓灰質炎、白喉、麻疹、新生兒破傷風、狂犬病等多種疾病,極大地造福了人類。目前常用的疫苗主要包括滅活疫苗、減毒活疫苗、病毒載體疫苗、亞單位疫苗

    Nature子刊:董一洲團隊開發仿生納米顆粒遞送mRNA

      針對T細胞共刺激受體的抗體目前已被開發用來激活T細胞免疫,并在癌癥免疫治療中應用。然而,腫瘤浸潤性免疫細胞往往缺乏共刺激分子的表達,這可能阻礙抗體介導的免疫治療。  癌癥免疫治療包括多種刺激抗腫瘤免疫反應的方法,包括癌癥疫苗,基于細胞的治療,免疫檢查點阻斷,單克隆抗體,基于mRNA的免疫治療和納

    疫苗進入mRNA時代:解密“運載火箭”核酸脂質納米粒

      近段時間,新冠病毒南非變種奧密克戎來勢洶洶,針對這種變異病毒的疫苗開發正緊鑼密鼓地進行,其中頗受關注的當屬mRNA疫苗。一些知名制藥企業表示可以迅速針對新變種調整mRNA疫苗,在100天內即可交付首批疫苗。可見,mRNA疫苗具有快速研發、快速制備的優點,此外還具有安全性和有效性好,持續時間長的優

    沒有它就沒有mRNA新冠疫苗,脂質納米顆粒技術迎來“復興”

      如今,世界上成百上千萬人已經接種了基于mRNA技術開發的新冠疫苗。它們在幫助人們產生對新冠病毒的免疫力,控制新冠疫情的蔓延方面起到了舉足輕重的作用。這種疫苗的一個關鍵元素是mRNA,這種遺傳物質能夠讓我們自己身體中的細胞生成新冠病毒蛋白,從而激發免疫系統產生針對新冠病毒的免疫反應,從而預防未來可

    Polyadenylation-of-mRNA

    Gene expression requires the coordination and integration of multiple processes, including transcription, splicing, polyadenylation, nucleocytoplasmic

    mRNA差異顯示技術(mRNA-differetial-display)(1)

    1.概 述mRNA差異顯示技術(mRNA differetial display)是一種快速有效的克隆差異性表達基因的方法。 方法建立:1992年 Liang P和Pardee首次應用DD技術對比人類乳腺癌細胞與正常細胞所表達的mRNA,以此來克隆癌細胞所特有的基因 目前已應用于個各領域:

    mRNA工藝技術平臺之mRNA制劑

      mRNA疫苗或藥物的生產工藝,主要分為質粒DNA原液制備、mRNA原液制備、mRNA制劑制備三個階段。本文討論第三階段的工藝平臺,也是當前挑戰最大的環節。  關鍵的制劑技術突破解決了mRNA的成藥性問題,使其從60年的科研之路走向臨床商業化應用,并在此次新冠疫苗應用中大放異彩。據公開信息, BN

    mRNA差異顯示技術(mRNA-differetial-display)(2)

    6.技術路線 mRNA 差異顯示技術 The fluoroDD System ?Builds on the HIEROGLYPH? system –TMR-labeled anchored primers –Increased primer concentrations –I

    納米技術+mRNA技術,雙劍合璧破解前列腺癌治療難題

    盡管全世界有很多課題組都在開發靶向腫瘤細胞中高度活躍的蛋白或者信號通路的抗癌療法,但是一組來自布萊根婦女醫院、波士頓兒童醫院以及紀念斯隆凱特琳癌癥中心的研究人員正在開發一種新療法,允許他們以一種新方法治療癌癥。抑癌因子的缺失——如磷酸酶張力蛋白同系物(phosphoatase and tensi

    mRNA細胞溶質傳遞的病毒模擬細胞膜涂層納米顆粒的研發

      隨著納米技術的飛速發展,納米給藥已成為現代醫療的一個重要發展方向。納米藥物的一大挑戰是細胞攝取藥物后有效的內體逃逸,因為大多數藥物載荷需定位于除內體外的亞細胞結構后發揮活性,而病毒可以通過內吞作用后引發膜融合,由此將其遺傳物質遞送至宿主細胞的胞質中。既往對于甲型流感病毒的研究顯示,病毒表面發現的

    可用于mRNA細胞溶質傳遞的病毒模擬細胞膜涂層納米顆粒

      隨著納米技術的飛速發展,納米給藥已成為現代醫療的一個重要發展方向。納米藥物的一大挑戰是細胞攝取藥物后有效的內體逃逸,因為大多數藥物載荷需定位于除內體外的亞細胞結構后發揮活性,而病毒可以通過內吞作用后引發膜融合,由此將其遺傳物質遞送至宿主細胞的胞質中。既往對于甲型流感病毒的研究顯示,病毒表面發現的

    理性化設計的mRNA納米疫苗可增強腫瘤免疫治療效果

      中國科學院上海藥物所李亞平研究員、鄭明月研究員和上海交通大學醫學院王當歌研究員在 National Science Review 期刊發表了題為:STING agonist-boosted mRNA immunization via intelligent design of nanovacci

    p53-mRNA納米療法與此療法相結合,從而有效治療肝癌

      基于免疫檢查點阻斷(ICB)的免疫療法在治療肝細胞癌和其它癌癥上或許效益有限,部分是通過免疫抑制性的腫瘤微環境所介導的。近日,一篇發表在國際雜志Nature Communications上題為“Combining p53 mRNA nanotherapy with immune checkpoi

    mRNA的分離

    與rRNA和tRNA不同的是,哺乳動物細胞的絕大部分mRNA在其3'端均有一poly(A)尾,因此可以用 oligo(dT)-纖維素親和層析法從大量的細胞RNA中分離mRNAdmonds等,1971;At Leder,1972)。在構建cDNA文庫時, 必須經上述純化步驟制備mRNA

    mRNA的分離

    與rRNA和tRNA不同的是,哺乳動物細胞的絕大部分mRNA在其3'端均有一poly(A)尾,因此可以用oligo(dT)-纖維素親和層析法從大量的細胞RNA中分離mRNAdmonds等,1971;At Leder,1972)。在構建cDNA文庫時,?必須經上述純化步驟制備mRNA模板。進行

    mRNA的分離

    與rRNA和tRNA不同的是,哺乳動物細胞的絕大部分mRNA在其3'端均有一poly(A)尾,因此可以用oligo(dT)-纖維素親和層析法從大量的細胞RNA中分離mRNAdmonds等,1971;At Leder,1972)。在構建cDNA文庫時, 必須經上述純化步驟制備mRNA模板。進行

    mRNA的純化

    實驗概要本文介紹了mRNA的純化方法。實驗原理mRNA的分離方法較多,其中以寡聚(dT)-纖維素柱層析法最為有效,已成為常規方法。此法利用mRNA ?3‘末端含有Poly(A ?)的特點,在RNA流經寡聚(dT)纖維素柱時,在高鹽緩沖液的作用下,mRNA被特異地結合在柱上,當逐漸降低鹽的濃度時或在低

    如何提取mrna

    1 細胞總RNA的提取1)、6孔板細胞(CNE-2)匯合度為90-100%時,取出無菌室,去其上清,用PBS洗兩次后,每孔加TRIZOL試劑(Gibco公司) 1 ml,搖勻,無菌罩內消化3-5分鐘(觀察:液體變粘稠,細胞脫壁).2)、將各孔內消化好的細胞裂解液吸到一DEPC處理過的1.5 ml E

    Human-FastTrack-mRNA-Isolation

    Preparation of Cells1.Prepare or collect between 2x107?cells for each mRNA prep (will yield about 10-20μg of mRNA). If PBMCs from a whole blood sample

    mRNA-的分離實驗

    實驗方法原理?哺乳動物細胞的絕大部分mRNA在其3‘ 端均有一poly(A)尾,因此可以用oligo(dT)-纖維素親和層析法從大量的細胞RNA中分離mRNA。實驗步驟1.? 用0.1?mol/L NaOH懸浮0.5~1.0 goligo(dT)-纖維素。?2. ?將懸浮液裝入滅菌的一次性層

    mRNA提取、分離純化

    從真核生物的組織或細胞中提取mRNA,通過酶促反應逆轉錄合成cDNA的第一鏈和第二鏈,將雙鏈cDNA和載體連接,然后轉化擴增, 即可獲得cDNA文庫,構建的cDNA文庫可用于真核生物基因的結構、表達和調控的分析;比較cDNA和相應基因組DNA序列差異可確定內含子存在和了解轉錄后加工等一系列問題。總之

    mRNA-的分離實驗

    oligo(dT)-纖維素親和層析法 ? ? ? ? ? ? 實驗方法原理 ?哺乳動物細胞的絕大部分mRNA在其3‘ 端均有一poly(A)尾,因此可以

    mRNA的功能特點

    mRNA含A、U、G、C四種核苷酸,每三個相聯而成一個三聯體,即密碼,代表一個氨基酸的信息,故按數學中排列組合法則計算,可形成43=64個不同的密碼。根據實驗結果,推得64個密碼與氨基酸的對應關系如下表。?mRNA密碼與氨基酸的對應關系64個密碼中,61個密碼分別代表各種氨基酸。每種氨基酸少的只有一

    mRNA差別顯示技術

    mRNA差別顯示技術也稱為差示反轉錄PCR(Differential Display of reverse Transcriptional PCR)簡稱為ddRT-PCR。它是將mRNA反轉錄技術與PCR技術二者相互結合發展起來的一種RNA指紋圖譜技術。目前已廣泛應用于分離鑒定組織特異性表達的基因。

    隱蔽mRNA的定義

    與專一性蛋白質結合不能被核糖體識別的mRNA,在受精前儲存并不起始翻譯。因為卵細胞核和精細胞核在融合時,無法轉錄出mRNA以進行必要的蛋白合成,所以隱蔽mRNA由起著母源性短暫提供蛋白合成模板的作用。

    細胞凋亡mRNA檢測

    研究者們發現了很多在細胞凋亡時表達異常的基因,檢測這些特異基因的表達水平也成為檢測細胞凋亡的一種常用方法。據報道,Fas?蛋白結合受體后能誘導癌細胞中的細胞毒性T細胞(cytotoxic T cells)等靶細胞。Bcl-2 和bcl-X (長) 作為抗凋亡(bcl-2 和bcl-X)的調節物,它們

    組織mRNA提取方法

    (一)總RNA提取-Trizol法Trizol法適用于人類、動物、植物、微生物的組織或培養細菌,樣品量從幾十毫克至幾克。用Trizol法提取的總RNA絕無蛋白和DNA污染。RNA可直接用于Northern斑點分析,斑點雜交, Poly(A)+分離,體外翻譯,RNase封阻分析和分子克隆。1、將組織在

    mRNA的功能介紹

    mRNA含A、U、G、C四種核苷酸,每三個相聯而成一個三聯體,即密碼,代表一個氨基酸的信息,故按數學中排列組合法則計算,可形成43=64個不同的密碼。根據實驗結果,推得64個密碼與氨基酸的對應關系如下表。mRNA密碼與氨基酸的對應關系64個密碼中,61個密碼分別代表各種氨基酸。每種氨基酸少的只有一個

  • <option id="immmk"></option>
  • <noscript id="immmk"><kbd id="immmk"></kbd></noscript>
    伊人久久大香线蕉综合影院首页