關于藍細菌的歷史介紹
藍細菌是古老的生物,在約30億年前,地球本是無氧的環境,使地球由無氧環境轉化為有氧環境是由于藍細菌出現并產氧所致。人們從前寒武紀地殼中發現大量由藍細菌(如螺旋藻)生長形成的化石化的疊層巖(約30億年)及27億年黑色頁巖中代表藍藻存在的分子化石(生物標志物)中得到證實。......閱讀全文
關于藍細菌的歷史介紹
藍細菌是古老的生物,在約30億年前,地球本是無氧的環境,使地球由無氧環境轉化為有氧環境是由于藍細菌出現并產氧所致。人們從前寒武紀地殼中發現大量由藍細菌(如螺旋藻)生長形成的化石化的疊層巖(約30億年)及27億年黑色頁巖中代表藍藻存在的分子化石(生物標志物)中得到證實。
關于藍細菌的危害的介紹
藍細菌與水體環境質量關系密切,在水體生長旺盛時,能使水色變藍或其他顏色,并且有的藍細菌能發出草腥味或霉味。湖波中常見的藍細菌有銅綠微囊藻、曲魚腥藻等。某些種屬的藍細菌大量繁殖會引起“水華”(淡水水體)或“赤潮”(海水),導致水質惡化,引起一系列環境問題。在污水中或潮濕的土地上常見的有灰顫藻或巨顫
關于藍細菌的繁殖方法介紹
藍細菌通過無性方式繁殖。單細胞類群以裂殖方式繁殖,包括二分裂或多分裂。絲狀體類群可通過單平面或多平面的裂殖方式加長絲狀體,還常通過鏈絲段繁殖。少數類群以內孢子方式繁殖。在干燥、低溫和長期黑暗等條件下,可形成休眠狀態的靜息孢子,當在適宜條件下可繼續生長。 藍細菌曾被稱為藍藻或藍綠藻,是一類分布很
藍細菌的繁殖方式介紹
藍藻的繁殖方式有兩類,一為營養繁殖,包括細胞直接分裂(即裂殖)、群體破裂和絲狀體產生藻殖段等幾種方法,另一種為某些藍藻可產生內生孢子或外生孢子等,以進行無性生殖。孢子無鞭毛。至2018年尚未發現藍藻有真正的有性生殖。
關于基因歷史的介紹
19世紀60年代,奧地利遺傳學家格雷戈爾·孟德爾就提出了生物的性狀是由遺傳因子控制的觀點,但這僅僅是一種邏輯推理。20世紀初期,遺傳學家摩爾根通過果蠅的遺傳實驗,認識到基因存在于染色體上,并且在染色體上是呈線性排列,從而得出了染色體是基因載體的結論。1909年丹麥遺傳學家約翰遜(W. Johan
藍細菌的基本信息介紹
舊名為藍藻(blue algae)或藍綠藻(blue—green algae),是一類進化歷史悠久、革蘭氏染色陰性、無鞭毛、含葉綠素a,但不含葉綠體(區別于真核生物的藻類)、能進行產氧性光合作用的大型單細胞原核生物。與光合細菌區別是:光合細菌(紅螺菌)進行較原始的光合磷酸化作用,反應過程不放氧,
關于抗氧劑的發展歷史介紹
為了適應從海洋生物演變為陸地生物,陸生植物開始產生海洋生物所不具有的抗氧化劑比如維生素C、多酚和生育酚。五千萬年到兩億年前被子植物植物在進化的過程中發展出了許多抗氧化的天然色素--特別是在侏羅紀時代--作為一種化學手段抵御光合作用的副產物活性氧類物質。本來抗氧化劑一詞特指那類可以防止氧氣消耗的化
關于遺傳密碼的歷史介紹
遺傳密碼的發現是20世紀50年代的一項奇妙想象和嚴密論證的偉大結晶。mRNA由四種含有不同堿基腺嘌呤(簡稱A)、尿嘧啶(簡稱U)、胞嘧啶(簡稱C)、鳥嘌呤(簡稱G)的核苷酸組成。最初科學家猜想,一個堿基決定一種氨基酸,那就只能決定四種氨基酸,顯然不夠決定生物體內的二十種氨基酸。那么二個堿基結合在
關于葉綠素的研究歷史介紹
德國化學家韋爾斯泰特,在20世紀初,采用了當時最先進的色層分離法來提取綠葉中的物質。經過10年的艱苦努力,韋爾斯泰特用成噸的綠葉,終于捕捉到了葉中的神秘物質——葉綠素,正是因為葉綠素在植物體內所起到的奇特作用,才使我們人類得以生存。由于成功地提取了葉綠素,1915年,韋爾斯泰特榮獲了諾貝爾化學獎
關于內啡肽的發展歷史介紹
在1975年,腦內啡分別由兩組獨立的研究人員同時發現。 蘇格蘭的約翰?休斯(John Hughes)及漢斯?科斯特利茲(Hans Kosterlitz)首次由豬只的腦袋中發現有α(alpha)、β(beta)及γ(gamma)3種腦內啡。當時他們稱它為enkephalins(由大腦的希臘文εγ
關于阿糖胞苷的研究歷史介紹
阿糖胞苷最早在1959年由加州大學伯克利分校的Richard Walwick、Walden Roberts和Charles Dekker合成。美國食品藥品監督管理局在1969年6月批準阿糖胞苷進入市場。它最初由Upjohn公司以Cytosar-U的商品名出售這種藥物的化學結構是胞嘧啶與阿拉伯糖結
關于衡器歷史發展的介紹
衡器是在商品的交換過程中產生和發展的。人類最早使用的衡器是原始天平。約在公元前5000年,埃及就已使用等臂天平秤(圖1 )。它是在簡易杠桿中點設一支點,在杠桿一端(圖中右端)的盤(鉤)上放置被測物,在另一端(圖中左端)的盤上逐個放置形狀、質量一樣的物體,當這種裝置平衡時,就意味著兩邊的質量相等,
關于層析法的歷史介紹
1903年3月21日俄國植物學家茨維特(Michael Tswett,1872-1919)在華沙自然科學學會生物學會議上發表了“一種新型吸附現象及其在生化分析上的應用”研究論文,介紹了一種應用吸附原理分離植物色素的新方法,并首先認識到這種層析現象在分離分析方面有重大價值。1906年他在德國植物學
關于阿司匹林的研發歷史介紹
早在1853年夏爾,弗雷德里克·熱拉爾(Gerhardt)就用水楊酸與乙酸酐合成了乙酰水楊酸,(乙酰化的水楊酸)但沒能引起人們的重視。1897年,德國化學家費利克斯·霍夫曼又進行了合成,并為他父親治療風濕關節炎,療效極好。在1897年,德國拜耳第一次合成了構成阿司匹林的主要物質。 阿司匹林于1
關于糖類的發展歷史介紹
中國最早有飴、餳、糖等字,都是以糯米為原料,稀的叫飴,干的叫餳、糖。在六朝時才出現“糖”字。李時珍《本草綱目》載:“糖法出西域,唐太宗始遣人傳其法入中國,以蔗準過漳木槽取而分成清者,為蔗餳。凝結有沙者為沙糖,漆甕造成如石如霜如冰者為石蜜、為糖霜、為冰糖。”“糖”與一般所稱的“糖”不同,“糖”是指
關于NADH的研究歷史介紹
1906年,諾貝爾獎得者亞瑟·哈登發現NADH 1935年,正式拉開NADH功能研究序幕 1987年,NADH開啟臨床治療序幕 1994年,喬治·柏克梅爾教授研發“穩定型NADH” 21世紀NADH廣泛應用于亞健康、衰老、防癌等研究領域 2015年,高穩定性的NADH膳食補充劑走向中國
關于電池的歷史發展介紹
1780年的一天,意大利解剖學家伽伐尼(Luigi Galvani)在做青蛙解剖時,兩手分別拿著不同的金屬器械,無意中同時碰在青蛙的大腿上,青蛙腿部的肌肉立刻抽搐了一下,仿佛受到電流的刺激,而如果只用一種金屬器械去觸動青蛙,就無此種反應。伽伐尼認為,出現這種現象是因為動物軀體內部產生的一種電,他
關于乙烯的發現歷史介紹
中國古代就發現將果實放在燃燒香燭的房子里可以促進采摘果實的成熟。19世紀德國人發現在泄露的煤氣管道旁的樹葉容易脫落。第一個發現植物材料能產生一種氣體,并對鄰近植物能產生影響的是卡曾斯,他發現橘子產生的氣體能催熟與其混裝在一起的香蕉。直到1934年甘恩(Gane)才首先證明植物組織確實能產生乙烯。
關于γ羥基丁酸的歷史介紹
GHB由亞歷山大·扎伊采夫(Alexander Mikhaylovich Zaytsev)于1874年首次合成。20世紀60年代初,Henri Laborit博士在研究神經遞質γ-氨基丁酸(GABA)時對GHB對人的作用進行了全面研究。GHB很快被大量使用,因為它副作用小,持續時間短,缺點是應用
關于氯胺酮的發展歷史介紹
1962年,美國藥劑師CalvinStevens首次成功人工合成,最初發現為一種有效的麻醉藥,據稱首次使用是被作為獸醫麻醉劑,并曾在越戰時期作為麻醉藥而廣泛用于野戰創傷外科中。 1971年,美國舊金山和洛杉磯市首先報告氯胺酮濫用病例,當時主要是在一些通宵跳舞的娛樂場所,而光顧這些場所的主要是一
關于尼古丁歷史的由來介紹
尼古丁(Nicotine)的名字,來自煙草這種植物的學名Nicotiana tabacum,而煙草的學名是以一位駐葡萄牙的法國人Jean Nicot de Villemain而命名的。 1560年時,將煙草的種子由巴西寄回巴黎,并將之推廣于醫療用途。1828年,德國化學家Posselt和Rei
關于質膜的研究歷史的介紹
1. E. Overton 1895發現凡是溶于脂肪的物質很容易透過植物的細胞膜,而不溶于脂肪的物質不易透過細胞膜,因此推測細胞膜由連續的脂類物質組成。 2. E. Gorter & F. Grendel 1925用有機溶劑提取了人類紅細胞質膜的脂類成分,將其鋪展在水面,測出膜脂展開的面積二倍
關于核酸的發現歷史的介紹
核酸最早于1869年由瑞士醫生和生物學家弗雷德里希·米歇爾分離獲得,稱為Nuclein。 在19世紀80年代早期,德國生物化學學家,1910年諾貝爾生理和醫學獎獲得者科塞爾進一步純化獲得核酸,發現了它的強酸性。他后來也確定了核堿基。 1889年,德國病理學家Richard Altmann創造
關于重疊基因的歷史發現介紹
重疊基因 是在1977年發現的。早在1913年A.H.斯特蒂文特已在果蠅中證明了基因在染色體上作線狀排列,50年代對基因精細結構和順反位置效應等研究的結果也說明基因在染色體上是一個接著一個排列而并不重疊。但是1977年F.桑格在測定噬菌體ΦX174的DNA的全部核苷酸序列時,卻意外地發現基因D中
關于酶工程的發展歷史介紹
在七十年代以后,伴隨著第二代酶——固定化酶及其相關技術的產生,酶工程才算真正登上了歷史舞臺。固定化酶正日益成為工業生產的主力軍,在化工醫藥、輕工食品、環境保護等領域發揮著巨大的作用。不僅如此,還產生了威力更大的第三代酶,它是包括輔助因子再生系統在內的固定化多酶系統,它正在成為酶工程應用的主角。
關于壓延銅箔的歷史發展介紹
20世紀八、九十年代在我國長三角地區已有FPC用壓延銅箔生產企業,但規模很小,隨著國內壓延銅箔市場需求的增長,截止2020年全球有十多家壓延銅箔生產企業在產,境外主要集中在日本和美國,中國已有5家壓延銅箔企業投產,在建1家。 生產設備大多立足引進,壓延銅箔生產工藝難以掌握,生產裝備水平要求很高
關于P-物質的發展歷史介紹
屬于速激肽家族 廣泛分布于腦內,在負責調節情緒的腦區(杏仁核、導水管周圍灰質和下丘腦等)比較豐富,同時在初級感覺神經元的胞體及神經纖維上有較高表達 速激肽(主要指P物質)的主要作用是傳遞痛覺信息——外周傷害性感覺經C型傳入纖維傳至脊髓背角或腦干,釋放P物質及谷氨酸,激活二級傷害感受神經元,向
關于復制酶的發展歷史介紹
1990年,美國科學家Golemboski在研究TMV基因組的編碼54KD蛋白的基因時,意外地發現將該基因轉入煙草后獲得的轉其因煙草能完全抵抗TMV的侵染。國內有些實驗室很快克隆了TMV和CMV的復制酶基因,并獲得了高抗性煙草轉基因工程植株。利用病毒復制酶基因介導的抗性與上述其他基因介導的抗性相
關于細胞凋亡的研究歷史介紹
1. 凋亡概念的形成 1965年澳大利亞科學家發現,結扎鼠門靜脈后,電鏡觀察到肝實質組織中有一些散在的死亡細胞,這些細胞的溶酶體并未被破壞,顯然不同于細胞壞死。這些細胞體積收縮、染色質凝集,從其周圍的組織中脫落并被吞噬,機體無炎癥反應。1972年Kerr等三位科學家首次提出了細胞凋亡的概念,宣告
關于微RNA的歷史發現介紹
MicroRNA(miRNA)是一類內生的、長度約20-24個核苷酸的小RNA,其在細胞內具有多種重要的調節作用。每個miRNA可以有多個靶基因,而幾個miRNAs也可以調節同一個基因。這種復雜的調節網絡既可以通過一個miRNA來調控多個基因的表達,也可以通過幾個miRNAs的組合來精細調控某個