四維核酸雜交技術介紹
定義 四維核酸雜交技術[ 1 ](4DH),即在傳統核酸雜交三維空間(XYZ:表征DNA片段的長度、堿基組成和堿基的排列)的基礎上引入溫度作為第四位參數所構成的四維溫度空間平臺上建立的核酸雜交技術。 背景 基因組(genome)是指人類細胞中所有遺傳信息的總和。基因組信息是由脫氧核糖核酸(又稱為DNA)攜帶的。基因組的DNA是一種由4種堿基(A,G,C和T)組成的雙鏈聚合體,這種雙鏈結構的每條單鏈核苷酸鏈都以磷酸核糖為骨架,其堿基順序稱作DNA的一級序列結構。基因組DNA的兩條鏈是通過每條鏈上互補堿基間氫鍵的相互作用而連結在一起的。堿基的化學結構顯示,A與T相互作用形成兩對氫鍵(而不與其他任何堿基作用),G與C相互作用形成三對氫鍵(而不與其他任何堿基作用)。DNA固有的內部雙鏈以及堿基對相互作用的精確性在雜交過程中被利用。雜交是兩條互補的單鏈核苷酸鏈之間形成一條穩定的雙股螺旋雙鏈結構的過程。雜交反應可......閱讀全文
四維核酸雜交技術介紹
四維核酸雜交技術[?1?](4DH),即在傳統核酸雜交三維空間(XYZ:表征DNA片段的長度、堿基組成和堿基的排列)的基礎上引入溫度作為第四位參數所構成的四維溫度空間平臺上建立的核酸雜交技術。背景 基因組(genome)是指人類細胞中所有遺傳信息的總和。基因組信息是由脫氧核糖核酸(又稱為DNA)攜帶
四維核酸雜交技術介紹
定義 四維核酸雜交技術[ 1 ](4DH),即在傳統核酸雜交三維空間(XYZ:表征DNA片段的長度、堿基組成和堿基的排列)的基礎上引入溫度作為第四位參數所構成的四維溫度空間平臺上建立的核酸雜交技術。 背景 基因組(genome)是指人類細胞中所有遺傳信息的總和。基因組信息
四維核酸雜交技術介紹
定義 四維核酸雜交技術[ 1 ](4DH),即在傳統核酸雜交三維空間(XYZ:表征DNA片段的長度、堿基組成和堿基的排列)的基礎上引入溫度作為第四位參數所構成的四維溫度空間平臺上建立的核酸雜交技術。 背景 基因組(genome)是指人類細胞中所有遺傳信息的總和。基因組信息
四維核酸雜交技術簡介
定義 四維核酸雜交技術[?1?](4DH),即在傳統核酸雜交三維空間(XYZ:表征DNA片段的長度、堿基組成和堿基的排列)的基礎上引入溫度作為第四位參數所構成的四維溫度空間平臺上建立的核酸雜交技術。 背景 基因組(genome)是指人類細胞中所有遺傳信息的總和。基因組信息是由脫氧核糖核酸(又稱為DN
核酸探針雜交檢測技術介紹
一、核酸探針預雜交預雜交的目的是用非特異性 DNA 分子(鮭精 DNA 或小牛胸腺 DNA)及其他高分子化合物(Denhart’s溶液)將待測核酸分子中的非特異性位點封閉,以避免這些位點與探針的非特異性結合。雜交反應是使單鏈核酸探針與固定在膜上的待測核酸單鏈在一定溫度和條件下進行復性反應的過程。雜交
核酸分子雜交技術的基本介紹
由于核酸分子雜交的高度特異性及檢測方法的靈敏性,它已成為分子生物學中最常用的基本技術,被廣泛應用于基因克隆的篩選,酶切圖譜的制作,基因序列的定量和定性分析及基因突變的檢測等。 (1)靈敏度高、特異性強; (2)用于 DNADNA和RNARNA的定性、定量檢測。
關于核酸分子雜交技術的基本介紹
由于核酸分子雜交的高度特異性及檢測方法的靈敏性,它已成為分子生物學中最常用的基本技術,被廣泛應用于基因克隆的篩選,酶切圖譜的制作,基因序列的定量和定性分析及基因突變的檢測等。
基因診斷技術核酸雜交的相關介紹
是從核酸分子混合液中檢測特定大小的核酸分子的傳統方法。核酸雜交反應是一對一的反應,即膜上有一個被檢測分子時,相應就有一個標記的探針分子與它雜交。其原理是核酸變性和復性理論。即雙鏈的核酸分子在某些理化因素作用下雙鏈解開,而在條件恢復后又可依堿基配對規律形成雙鏈結構。雜交通常在一支持膜上進行,因此又
核酸雜交的技術原理
其原理是核酸變性和復性理論。即雙鏈的核酸分子在某些理化因素作用下雙鏈解開,而在條件恢復后又可依堿基配對規律形成雙鏈結構。雜交通常在一支持膜上進行,因此又稱為核酸印跡雜交。根據檢測樣品的不同又被分為DNA印跡雜交(Southern blot hybridization )和RNA印跡雜交(Northe
核酸雜交技術的概述
DNA或RNA先轉移并固定到硝酸纖維素或尼龍膜上,與其互補的單鏈DNA或RNA探針用放射性或非放射性標記。在膜上雜交時,探針通過氫鍵與其互補的靶序列結合,洗去未結合的游離探針后,經放射自顯影或顯色反應檢測特異結合的探針。
核酸分子雜交技術應用
核酸分子雜交作為一項基本技術,已應用于核酸結構與功能研究的各個方面。核酸分子雜交具有很高的靈敏度和高度的特異性,因而該技術在分子生物學領域中已廣泛地使用于克隆基因的篩選、酶切圖譜的制作、基因組中特定基因序列的定性、定量檢測和疾病的診斷等方面。因而它不僅在分子生物學領域中具有廣泛地應用,而且在臨床診斷
核酸分子雜交技術簡介
核酸分子雜交(簡稱雜交,hybridization)是核酸研究中一項最基本的實驗技術。互補的核苷酸序列通過Walson-Crick堿基配對形成穩定的雜合雙鏈DNA或RNA分子的過程稱為雜交。雜交過程是高度特異性的,可以根據所使用的探針已知序列進行特異性的靶序列檢測。
關于核酸分子雜交技術的特點和技術介紹
1、特點 (1)靈敏度高、特異性強; (2)用于 DNADNA和RNARNA的定性、定量檢測。 2、用途 (1)檢測特異 DNADNA序列的拷貝數、特定DNADNA區域的限制性內切酶圖譜,判定基因的缺失、插入、重排現象; (2)特異基因克隆的篩選; (3)核酸序列的初略分析; (4
核酸雜交的技術操作步驟
(1)制備樣品:首先需要從待檢測組織樣品提取DNA或RNA。DNA應先用限制性內切酶消化以產生特定長度的片段,然后通過凝膠電泳將消化產物按分子大小進行分離。一般來說DNA分子有其獨特的限制性內切酶圖譜,所以經酶切消化和電泳分離后可在凝膠上形成特定的區帶。再將含有DNA片段的凝膠進行變性處理后,直接轉
核酸分子雜交法介紹
這是最早用于性病診斷的重組DNA技術。基本原理是具有一定同源性的兩條核酸單鏈在一定條件下(適宜的溫度及離子強度等)可按堿基互補原則形成雙鏈,此雜交過程是高度特異的。雜交的雙方是待測核酸及探針。待測核酸序列為性病病原體基因組或質粒DNA。探針以放射核素或非放射性核素標記,以利于雜交信號的檢測。 所謂
關于核酸的雜交介紹
具有互補序列的不同來源的單鏈核酸分子,按堿基配對原則結合在一起稱為核酸雜交(hybridization)。雜交可發生在DNA-DNA、RNA-RNA和DNA-RNA之間。雜交是分子生物學研究中常用的技術之一,利用它可以分析基因組織的結構,定位和基因表達等,常用的雜交方法有Southern印跡法,
關于核酸雜交的步驟介紹
(1)制備樣品:首先需要從待檢測組織樣品提取DNA或RNA。DNA應先用限制性內切酶消化以產生特定長度的片段,然后通過凝膠電泳將消化產物按分子大小進行分離。一般來說DNA分子有其獨特的限制性內切酶圖譜,所以經酶切消化和電泳分離后可在凝膠上形成特定的區帶。再將含有DNA片段的凝膠進行變性處理后,直
核酸分子雜交探針的介紹
若雜交的目的是識別靶DNA中的特異核苷酸序列,這需要牽涉到另一項核酸操作的基本技術─探針(probe)的制備。探針是指帶有某些標記物(如放射性同位素32P,熒光物質異硫氰酸熒光素等)的特異性核酸序列片段。若我們設法使一個核酸序列帶上32P,那么它與靶序列互補形成的雜交雙鏈,就會帶有放射性。以適當
轉基因食品檢測技術——核酸雜交技術
核酸雜交技術的基本原理是兩條 DNA 鏈之間可以通過堿基配對而形成氫鍵,通常核酸雜交的檢測過程主要包括以下幾個步驟:將單鏈的目的 DNA 結合到膜上,然后加入單鏈、標記過的探針 DNA,在一定的溫度條件和離子濃度下使探針分子與目標 DNA 分子堿基配對,再洗去未結合的標記探針,檢測探針和目標 DNA
什么核酸雜交?
具有互補序列的不同來源的單鏈核酸分子,按堿基配對原則結合在一起稱為核酸雜交(hybridization)。雜交可發生在DNA-DNA、RNA-RNA和DNA-RNA之間。雜交是分子生物學研究中常用的技術之一,利用它可以分析基因組織的結構,定位和基因表達等,常用的雜交方法有Southern印跡法,No
分子雜交技術的核酸探針標記法
核酸探針根據核酸的性質,可分為DNA和RNA探針;根據是否使用放射性標記物的與否,可分為放射性標記探針和非放射性標記探針;根據是否存在互補鏈,可分為單鏈和雙鏈探針;根據放射性標記物摻入情況,可分為均勻標記和末端標記探針。下面將介紹各種類型的探針及標記方法。 分子生物研究中,最常用的探針即為雙鏈DNA
關于核酸分子雜交的基本介紹
雜交的雙方是所使用探針和要檢測的核酸。該檢測對象可以是克隆化的基因組DNA,也可以是細胞總DNA或總RNA。根據使用的方法被檢測的核酸可以是提純的,也可以在細胞內雜交,即細胞原位雜交。探針必須經過標記,以便示蹤和檢測。使用最普遍的探針標記物是同位素,但由于同位素的安全性,近年來發展了許多非同位素
核酸分子雜交的主要類型介紹
核酸分子雜交可分為液相雜交和固相雜交。1.液相雜交液相雜交是讓DNA探針和待測核酸在溶液中進行反應。在溶液中,待測核酸和探針均自由運動,增加了兩者結合的機會,因此液相雜交要比固相雜交快5~10倍。但液相雜交不易分離雜交體和游離核酸探針,常規應用不易。2.固相雜交固相雜交是先將待測核酸樣本結合到固相載
醫用核酸分子雜交儀的技術指標
·采用導流雜交技術,提高雜交效率,簡化操作步驟,縮短雜交時間; ·高速熱循環系統,采用先進熱電制冷技術,快速加熱和冷卻; ·彩色LCD顯示器,可對雜交過程中的溫控變化進行實時監控; ·機械升降臺代替手工密封,實現密封自動化; ·壓力平衡系統,減少雜交過程試劑的損耗。
核酸分子雜交技術的基本原理
由于核酸分子雜交的高度特異性及檢測方法的靈敏性,它已成為分子生物學中最常用的基本技術,被廣泛應用于基因克隆的篩選,酶切圖譜的制作,基因序列的定量和定性分析及基因突變的檢測等。 具有一定同源性的兩條核酸單鏈在一定的條件下(適宜的溫室度及離子強度等)可按堿基互補還原成雙鏈。雜交的雙方是待測核酸序列
什么是核酸雜交?
核酸雜交(Hybridization): 互補的核苷酸序列(DNA與DNA、DNA與RNA、RNA與RNA等)通過Watson-Crick堿基配對形成非共價鍵,從而形成穩定的同源或異源雙鏈分子的過程,稱為核酸分子雜交技術,又稱核酸雜交。
雜交核酸的定義
中文名稱雜交核酸英文名稱hybrid nucleic acid定 義來源不同的單鏈DNA或單鏈RNA,通過堿基配對所形成的異質雙鏈的核酸分子。應用學科生物化學與分子生物學(一級學科),核酸與基因(二級學科)
什么是核酸雜交?
核酸雜交(Hybridization): 互補的核苷酸序列(DNA與DNA、DNA與RNA、RNA與RNA等)通過Watson-Crick堿基配對形成非共價鍵,從而形成穩定的同源或異源雙鏈分子的過程,稱為核酸分子雜交技術,又稱核酸雜交。
核酸雜交的原理
其原理是核酸變性和復性理論。即雙鏈的核酸分子在某些理化因素作用下雙鏈解開,而在條件恢復后又可依堿基配對規律形成雙鏈結構。雜交通常在一支持膜上進行,因此又稱為核酸印跡雜交。根據檢測樣品的不同又被分為DNA印跡雜交(Southern blot hybridization )和RNA印跡雜交(Northe
核酸雜交的步驟
(1)制備樣品:首先需要從待檢測組織樣品提取DNA或RNA。DNA應先用限制性內切酶消化以產生特定長度的片段,然后通過凝膠電泳將消化產物按分子大小進行分離。一般來說DNA分子有其獨特的限制性內切酶圖譜,所以經酶切消化和電泳分離后可在凝膠上形成特定的區帶。再將含有DNA片段的凝膠進行變性處理后,直接轉