葉綠體基因組的概念
采用高鹽、低pH值法提取雷蒙德氏棉葉綠體DNA;通過物理剪切法獲得隨機斷裂的DNA片段;剪切片段末端、補平修飾后與pCC1FOS載體連接;用噬菌體包裝蛋白包裝重組DNA,侵染大腸桿菌EPI300,構建了雷蒙德氏棉葉綠體基因組文庫。對于葉綠體DNA剪切,以1 mL注射器中等速度吸打18次為最佳參數。......閱讀全文
葉綠體基因組的概念
采用高鹽、低pH值法提取雷蒙德氏棉葉綠體DNA;通過物理剪切法獲得隨機斷裂的DNA片段;剪切片段末端、補平修飾后與pCC1FOS載體連接;用噬菌體包裝蛋白包裝重組DNA,侵染大腸桿菌EPI300,構建了雷蒙德氏棉葉綠體基因組文庫。對于葉綠體DNA剪切,以1 mL注射器中等速度吸打18次為最佳參數。
葉綠體基因組
葉綠體是地球上綠色植物把光能轉化為化學能的重要細胞器,葉綠體中進行的光合作用是嚴格地受到遺傳控制的。早在20世紀初,人們就已知葉綠體的某些性狀是呈非孟德爾式遺傳的,但直到60年代才發現了葉綠體DNA(chloroplast DNA,ctDNA)。葉綠體基因組是一個裸露的環狀雙鏈DNA分子,其大小在1
葉綠體基因組的特點介紹
葉綠體基因組在很多方面與線粒體基因組的結構是相似的。葉綠體DNA(cpDNA)是雙鏈環狀,缺乏組蛋白和超螺旋。cpDNA中的GC含量與核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度離心來分離cpDNA。 每個葉綠體中cpDNA的拷貝數隨著物種的不同而不同。但都是多拷貝的。這些拷貝
葉綠體基因組--cpDNA的相關介紹
葉綠體基因組在很多方面與線粒體基因組的結構是相似的。葉綠體DNA(cpDNA)是雙鏈環狀,缺乏組蛋白和超螺旋。cpDNA中的GC含量與核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度離心來分離cpDNA。 每個葉綠體中cpDNA的拷貝數隨著物種的不同而不同。但都是多拷貝的。這些拷貝
藍藻和葉綠體基因組的比較研究
原核的藍藻和真核植物(包括其他藻類)中的葉綠體,都同樣進行放氧的光合作用,這為人類和整個生物界提供了賴以生存的食物、氧氣、能源和原料。對葉綠體和藍藻的細胞結構和分子生物學特性作分析,證明真核生物的葉綠體可能起源于藍藻祖先的內共生。這使藍藻在20多年來已成為光合作用研究的模式生物。藍藻基因組的作圖和測
關于葉綠體基因組--cpDNA的基本介紹
葉綠體基因組在很多方面與線粒體基因組的結構是相似的。葉綠體DNA(cpDNA)是雙鏈環狀,缺乏組蛋白和超螺旋。cpDNA中的GC含量與核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度離心來分離cpDNA。 每個葉綠體中cpDNA的拷貝數隨著物種的不同而不同。但都是多拷貝的。這些拷貝
藍藻和葉綠體基因組的比較研究
原核的藍藻和真核植物(包括其他藻類)中的葉綠體,都同樣進行放氧的光合作用,這為人類和整個生物界提供了賴以生存的食物、氧氣、能源和原料。對葉綠體和藍藻的細胞結構和分子生物學特性作分析,證明真核生物的葉綠體可能起源于藍藻祖先的內共生。這使藍藻在20多年來已成為光合作用研究的模式生物。 藍藻基因組的
藍藻和葉綠體基因組的比較研究
原核的藍藻和真核植物(包括其他藻類)中的葉綠體,都同樣進行放氧的光合作用,這為人類和整個生物界提供了賴以生存的食物、氧氣、能源和原料。對葉綠體和藍藻的細胞結構和分子生物學特性作分析,證明真核生物的葉綠體可能起源于藍藻祖先的內共生。這使藍藻在20多年來已成為光合作用研究的模式生物。 藍藻基因組的
藍藻和葉綠體基因組的比較研究
原核的藍藻和真核植物(包括其他藻類)中的葉綠體,都同樣進行放氧的光合作用,這為人類和整個生物界提供了賴以生存的食物、氧氣、能源和原料。對葉綠體和藍藻的細胞結構和分子生物學特性作分析,證明真核生物的葉綠體可能起源于藍藻祖先的內共生。這使藍藻在20多年來已成為光合作用研究的模式生物。藍藻基因組的作圖和測
藍藻和葉綠體基因組的比較研究
藍藻和葉綠體基因組的比較研究原核的藍藻和真核植物(包括其他藻類)中的葉綠體,都同樣進行放氧的光合作用,這為人類和整個生物界提供了賴以生存的食物、氧氣、能源和原料。對葉綠體和藍藻的細胞結構和分子生物學特性作分析,證明真核生物的葉綠體可能起源于藍藻祖先的內共生。這使藍藻在20多年來已成為光合作用研究的模
葉綠體基因組--cpDNA的結構功能特點
葉綠體基因組在很多方面與線粒體基因組的結構是相似的。葉綠體DNA(cpDNA)是雙鏈環狀,缺乏組蛋白和超螺旋。cpDNA中的GC含量與核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度離心來分離cpDNA。每個葉綠體中cpDNA的拷貝數隨著物種的不同而不同。但都是多拷貝的。這些拷貝位于類核
細胞化學基礎葉綠體基因組--cpDNA
葉綠體基因組在很多方面與線粒體基因組的結構是相似的。葉綠體DNA(cpDNA)是雙鏈環狀,缺乏組蛋白和超螺旋。cpDNA中的GC含量與核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度離心來分離cpDNA。每個葉綠體中cpDNA的拷貝數隨著物種的不同而不同。但都是多拷貝的。這些拷貝位于類核
Nature:藻類基因組解讀葉綠體秘史
我們初學生物時接觸得最早的就是光合作用,光合作用利用二氧化碳、水和太陽能合成有機物。世界上最重要的光合作用真核生物(植物)多半并不是自己演化出光合作用能力的,它們的葉綠體是從其他生物中“拿來”的。 這些葉綠體來源于真核宿主吞食的光合細菌,這一過程被稱為初級內共生。隨后,紅藻和綠藻中的葉綠體
關于葉綠體基因組的基本特點的介紹
葉綠體基因組在很多方面與線粒體基因組的結構是相似的。葉綠體DNA(cpDNA)是雙鏈環狀,缺乏組蛋白和超螺旋。cpDNA中的GC含量與核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度離心來分離cpDNA。 每個葉綠體中cpDNA的拷貝數隨著物種的不同而不同。但都是多拷貝的。這些拷貝
植物葉綠體基因組基因表達調控的研究
葉綠體基因組的特點是具相同或相關功能的基因組成復合操縱子結構。這一特點有利于葉綠體基因的表達與調控,例如rpoB-rpoC-rpoC 2操縱子是由編碼RNA聚合酶各個亞基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操縱子則編碼PSⅡ的部分蛋白質。葉綠體基因組基因表達調控方式。轉
植物葉綠體基因組基因表達調控的研究
葉綠體基因組的特點是具相同或相關功能的基因組成復合操縱子結構。這一特點有利于葉綠體基因的表達與調控,例如rpoB-rpoC-rpoC 2操縱子是由編碼RNA聚合酶各個亞基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操縱子則編碼PSⅡ的部分蛋白質。葉綠體基因組基因表達調控方式。轉
植物葉綠體基因組基因表達調控的研究
葉綠體基因組的特點是具相同或相關功能的基因組成復合操縱子結構。這一特點有利于葉綠體基因的表達與調控,例如rpoB-rpoC-rpoC 2操縱子是由編碼RNA聚合酶各個亞基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操縱子則編碼PSⅡ的部分蛋白質。葉綠體基因組基因表達調控方式。轉
植物葉綠體基因組基因表達調控的研究
葉綠體基因組的特點是具相同或相關功能的基因組成復合操縱子結構。這一特點有利于葉綠體基因的表達與調控,例如rpoB-rpoC-rpoC 2操縱子是由編碼RNA聚合酶各個亞基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操縱子則編碼PSⅡ的部分蛋白質。葉綠體基因組基因表達調控方式
植物葉綠體基因組基因表達調控的研究
葉綠體基因組的特點是具相同或相關功能的基因組成復合操縱子結構。這一特點有利于葉綠體基因的表達與調控,例如rpoB-rpoC-rpoC 2操縱子是由編碼RNA聚合酶各個亞基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操縱子則編碼PSⅡ的部分蛋白質。葉綠體基因組基因表達調控方式
煙草和水稻葉綠體cpDNA基因組成特點
1.基因組由兩個反向重復序列(IR)和一個短單拷貝序列(short single copy sequence, SSC)及一個長單拷貝序列(long single copy sequence, LSC)組成;2.IRA和IRB長各10-24Kb,編碼相同,方向相反。3.cpDNA啟動子和原核生物的相
葉綠體和線粒體基因組變異檢測獲突破
近日,《公共科學圖書館―綜合》發表了中國農業科學院油料作物研究所博士后曾長立與合作導師伍曉明研究建立的能高通量檢測葉綠體和線粒體基因組遺傳變異的新方法。 據曾長立介紹,葉綠體和線粒體基因組作為植物細胞質基因組,對光合作用、呼吸作用等重要生命過程具有重要意義。 研究葉綠體和線粒體基因組
榕屬葉綠體基因組比較研究獲進展
近年來,葉綠體基因組因基因組小、突變率和重組率低的特點,被廣泛用于植物系統發育、分子進化、譜系地理學的研究。榕屬(Ficus)作為桑科的最大屬,且是熱帶雨林的關鍵物種,而其系統發育關系仍需進一步研究。榕屬物種具有多樣的生態型,體現了對不同生境的高度適應性。盡管近年來關于榕屬葉綠體基因組的研究有所
中國植物葉綠體基因組研究顛覆學界認知
中國科學家一項歷時五年的研究成果顛覆了學界對植物葉綠體基因組的認知——科學家發現整個葉綠體基因組都是可以轉錄的。該研究成果已于近日發表在了《自然》出版集團的《科學報告》上。 《科學報告》的審稿專家一致認為,“這一成果首次發現了我們從來沒有想象過的現象,顛覆了傳統遺傳學上認為的只有葉綠體編碼基因
前基因組的概念
中文名稱前基因組英文名稱pregenome定 義某些病毒基因組DNA進入細胞核后,在宿主RNA聚合酶作用下產生的一條作為遺傳信息載體的信使核糖核酸(mRNA)。可以通過逆轉錄形成雙鏈的病毒基因組DNA。應用學科生物化學與分子生物學(一級學科),核酸與基因(二級學科)
線粒體基因組的概念
線粒體是真核細胞的一種細胞器,有它自己的基因組,這些基因組統稱為線粒體基因組。線粒體內的DNA,可參與蛋白質的合成,轉錄,與復制,具有較高的研究價值。
核基因組的概念
核基因組是指真核生物細胞核染色體所包含的的全部遺傳信息即堿基對,有別于諸如葉綠體和線粒體的質體基因組,以及黏粒及質粒等其他基因組存在形式。
表觀基因組的概念
中文名稱表觀基因組英文名稱epigenome定 義全基因組的甲基化圖譜。應用學科遺傳學(一級學科),基因組學(二級學科)
植物葉綠體基因組可以全部轉錄的新機制
葉綠體是地球上綠色植物把光能轉化為化學能、供給地球上的其它生物能量來源的重要細胞器,對葉綠體的功能和葉綠體基因組轉錄機制的研究一直以來是全球細胞生物學家、遺傳學家和分子生物學家孜孜以求的研究熱點。中國科學院昆明植物研究所研究員高立志帶領的研究團隊,歷時五年,通過對三種高等植物(水稻、玉米和擬南芥
關于藍藻和葉綠體基因組的比較研究介紹
原核的藍藻和真核植物(包括其他藻類)中的葉綠體,都同樣進行放氧的光合作用,這為人類和整個生物界提供了賴以生存的食物、氧氣、能源和原料。對葉綠體和藍藻的細胞結構和分子生物學特性作分析,證明真核生物的葉綠體可能起源于藍藻祖先的內共生。這使藍藻在20多年來已成為光合作用研究的模式生物。 藍藻基因組的
細胞化學基礎藍藻和葉綠體基因組的比較研究
原核的藍藻和真核植物(包括其他藻類)中的葉綠體,都同樣進行放氧的光合作用,這為人類和整個生物界提供了賴以生存的食物、氧氣、能源和原料。對葉綠體和藍藻的細胞結構和分子生物學特性作分析,證明真核生物的葉綠體可能起源于藍藻祖先的內共生。這使藍藻在20多年來已成為光合作用研究的模式生物。藍藻基因組的作圖和測