• <option id="immmk"></option>
  • <noscript id="immmk"><kbd id="immmk"></kbd></noscript>

    核磁共振波譜法的基本技術介紹

    共振頻率 當放置在磁場中時,核磁共振活性的原子核(比如1H和13C),以同位素的頻率特性吸收電磁輻射。共振頻率,原子核吸收的能量以及信號強度與磁場強度成正比。比方說,在場強為21特斯拉的磁場中,質子的共振頻率為900MHz。盡管其他磁性核在此場強下擁有不同的共振頻率,但人們通常把21特斯拉和900MHz頻率進行直接對應。 樣品處理 核磁共振波譜儀通常由一個旋轉的樣品架,一個非常強的磁鐵,一個射頻發射器和一個接收器組成,探頭(天線組件)在磁鐵內部環繞樣品,可選擇用于擴散測量的梯度線圈和電子設備來控制系統。旋轉樣品是平均擴散運動所必需的。而擴散常數(擴散有序光譜法或DOSY)的測量是在樣品靜止和離心的情況下進行的,流動池可用于在線分析工藝流程。 氘代NMR溶劑 NMR溶液中的絕大多數原子核屬于溶劑,大多數常規溶劑是烴,并含有NMR響應的質子。 因此,氘(氫-2)被取代(99+%)。雖然氘氧化物 (D2O)和氘代DMSO......閱讀全文

    核磁共振波譜法的基本技術介紹

      共振頻率  當放置在磁場中時,核磁共振活性的原子核(比如1H和13C),以同位素的頻率特性吸收電磁輻射。共振頻率,原子核吸收的能量以及信號強度與磁場強度成正比。比方說,在場強為21特斯拉的磁場中,質子的共振頻率為900MHz。盡管其他磁性核在此場強下擁有不同的共振頻率,但人們通常把21特斯拉和9

    關于核磁共振波譜法的基本技術介紹

      1、共振頻率  當放置在磁場中時,核磁共振活性的原子核(比如1H和13C),以同位素的頻率特性吸收電磁輻射。共振頻率,原子核吸收的能量以及信號強度與磁場強度成正比。比方說,在場強為21特斯拉的磁場中,質子的共振頻率為900MHz。盡管其他磁性核在此場強下擁有不同的共振頻率,但人們通常把21特斯拉

    核磁共振波譜法基本的NMR技術

    共振頻率當放置在磁場中時,核磁共振活性的原子核(比如1H和13C),以同位素的頻率特性吸收電磁輻射。共振頻率,原子核吸收的能量以及信號強度與磁場強度成正比。比方說,在場強為21特斯拉的磁場中,質子的共振頻率為900MHz。盡管其他磁性核在此場強下擁有不同的共振頻率,但人們通常把21特斯拉和900MH

    核磁共振波譜法的基本原理

    根據量子力學原理,與電子一樣,原子核也具有自旋角動量,其自旋角動量的具體數值由原子核的自旋量子數I決定,原子核的自旋量子數I由如下法則確定:1)中子數和質子數均為偶數的原子核,自旋量子數為0;2)中子數加質子數為奇數的原子核,自旋量子數為半整數(如,1/2, 3/2, 5/2);3)中子數為奇數,質

    核磁共振波譜法的相關介紹

      核磁共振波譜法(英語:Nuclear Magnetic Resonance spectroscopy,簡稱 NMR spectroscopy 或NMRS),又稱核磁共振波譜,是將核磁共振現象應用于測定分子結構的一種譜學技術。核磁共振波譜的研究主要集中在氫譜和碳譜兩類原子核的波譜。  人們可以從核

    核磁共振波譜法基本原理(二)

    (三)核磁共振條件由于在磁場中具有核磁矩的1H裂分為兩個不同能級,如果在B0的垂直方向用電磁波照射,提供一定的能量,當電磁波的能量(hv)等于兩個能級的能級差△E,則處于低能級的核可以吸收頻率為v的射頻波躍遷到高能級,從而產生核磁共振吸收信號。相鄰核磁能級的能級差為:電磁波的能量:△E'=h

    核磁共振波譜法基本原理(一)

    (一)原子核的磁性質原子核是帶正電的粒子,實驗證明大多數原子核在做自旋運動,因而具有一定的自旋角動量,用P表示,角動量是一個矢量,其方向服從右手螺旋定則。核由自旋產生的角動量不是任意數值,而是由自旋量子數決定的。根據量子力學理論,原子核的總角動量P的值為式中,h為普朗克常量;h為角動量的單位,h=h

    核磁共振波譜法等實驗方法介紹

    (一)原子核的自旋與原子核的磁矩核磁共振(Nuclear Magnetic Resonance NMR)波譜學是近幾十年發展的一門新學科。1945年以F.Block和E.M.Purcell為首的兩個研究小組分別觀測到水、石蠟中質子的核磁共振信號,為此他們榮獲1952年Nobe1物理獎。今天,核磁共振

    核磁共振波譜法的概述

    磁性原子核,比如H和C在恒定磁場中,只和特定頻率的射頻場作用。共振頻率,原子核吸收的能量以及信號強度與磁場強度成正比。比方說,在場強為21特斯拉的磁場中,質子的共振頻率為900MHz。盡管其他磁性核在此場強下擁有不同的共振頻率,但人們通常把21特斯拉和900MHz頻率進行直接對應。 化學位移在一個分

    核磁共振波譜法的原理

    核磁共振波譜分析法(NMR)是分析分子內各官能團如何連接的確切結構的強有力的工具。磁場中所處的不同能量狀態(磁能級)。原子核由質子、中子組成,它們也具有自旋現象。描述核自旋運動特性的是核自旋量子數I。不同的核在一個外加的高場強的靜磁場(現代NMR儀器由充電的螺旋超導體產生)中將分裂成2I+1個核自旋

    核磁共振波譜法的原理

    核磁共振波譜分析法(NMR)是分析分子內各官能團如何連接的確切結構的強有力的工具。磁場中所處的不同能量狀態(磁能級)。原子核由質子、中子組成,它們也具有自旋現象。描述核自旋運動特性的是核自旋量子數I。不同的核在一個外加的高場強的靜磁場(現代NMR儀器由充電的螺旋超導體產生)中將分裂成2I+1個核自旋

    卵泡穿刺技術的基本介紹

      卵泡穿刺一種治療不孕癥的方法。卵泡穿刺時應選擇靠近卵巢邊緣且距離陰道壁穿刺點較近卵泡進行穿刺,有利于卵子排出。  方法:對21例PCOS不孕患者在超聲引導下進行未成熟卵泡穿刺,抽吸卵泡液,對比觀察穿刺抽吸前后患者內分泌功能的變化。結果:21例患者分別經過2個周期~3個周期的穿刺治療后,所有患者血

    關于超濾技術的基本介紹

      超濾(ultrafiltration,UF)技術是介于微濾和納濾之間的一種膜分離技術,平均孔徑為3~100 nm,具有凈化、分離、濃縮溶液等功能。其截留機理主要包括膜的篩分作用和靜電作用,過濾介質為超濾膜,在兩側壓力差的驅動下,只有低分子量溶質和水能夠通過超濾膜,從而達到凈化、分離、濃縮的目的。

    血管造影技術的基本介紹

      血管造影,是一種介入檢測方法,將顯影劑注入血管里。因為X光無法穿透顯影劑,血管造影正是利用這一特性,通過顯影劑在X光下所顯示的影像來診斷血管病變的。  血管造影是一種輔助檢查技術,在當代技術發達時期,血管造影技術普遍用于臨床各種疾病的診斷與治療當中,有助于醫生及時發現病情,控制病情進展,有效地提

    超濾分級技術的基本介紹

    超濾分級技術?超濾分級是一種膜分離技術,能夠將溶液凈化、分離或者濃縮。典型應用是從溶液中分離大分子物質(如細菌)和膠體。中文名 超濾分級技術 外文名 Ultrafiltration classification technology工作原理在壓差的推動下,原料液中的溶劑和小的溶質粒子從高壓的料液側透

    核磁共振波譜法簡介

      核磁共振波譜法(英語:Nuclear Magnetic Resonance spectroscopy,簡稱 NMR spectroscopy 或 NMRS ),又稱核磁共振波譜,是將核磁共振現象應用于測定分子結構的一種譜學技術。核磁共振波譜的研究主要集中在氫譜和碳譜兩類原子核的波譜。  人們可以

    關于核磁共振波譜法的簡介

      核磁共振波譜法(英語:Nuclear Magnetic Resonance spectroscopy,簡稱 NMR spectroscopy 或 NMRS ),又稱核磁共振波譜,是將核磁共振現象應用于測定分子結構的一種譜學技術。核磁共振波譜的研究主要集中在氫譜和碳譜兩類原子核的波譜。  人們可以

    核酸分子雜交技術的基本介紹

      由于核酸分子雜交的高度特異性及檢測方法的靈敏性,它已成為分子生物學中最常用的基本技術,被廣泛應用于基因克隆的篩選,酶切圖譜的制作,基因序列的定量和定性分析及基因突變的檢測等。  (1)靈敏度高、特異性強;  (2)用于 DNADNA和RNARNA的定性、定量檢測。

    膜片鉗技術的基本介紹

      1976年德國馬普生物物理研究所Neher和Sakmann創建了膜片鉗技術(patch clamp recording technique)。這是一種以記錄通過離子通道的離子電流來反映細胞膜單一的或多個的離子通道分子活動的技術。它和基因克隆技術(gene cloning)并架齊驅,給生命科學研究

    基因轉移技術的基本步驟介紹

    (1)配制下列溶液①2×HEPES-緩沖鹽溶液(HBS)②2mol/L CaCl2③0.1×TE(pH8.0)用0.22μm濾器過濾除菌,分裝貯存于4℃。④DNA:將DNA(約20μg/106細胞)溶于0.1×TE(pH8.0),使用濃度為40μg/ml。為使轉化效率達到最高,質粒DNA應用CsCl

    什么是核磁共振波譜法?

    核磁共振波譜法(Nuclear Magnetic Resonance Spectroscopy, NMR )NMR是研究原子核對射頻輻射(Radio-frequency Radiation)的吸收,它是對各種有機和無機物的成分、結構進行定性分析的最強有力的工具之一,有時亦可進行定量分析。

    分子印跡技術和基本介紹

      將各種生物大分子從凝膠轉移到一種固定基質上的過程稱為印跡技術(blotting)。  Southern在1975年首先提出了分子印漬的概念。他將瓊脂糖凝膠電泳分離的 DNA片段在凝膠中進行變性使其成為單鏈,然后將一張硝酸纖維素(nitrocellulose, NC)膜放在凝膠上,上面放上吸水紙巾

    核磁共振波譜法的必要條件

    具有核磁性質的原子核(或稱磁性核或自旋核),在高強磁場的作用下,吸收射頻輻射,引起核自旋能級的躍遷所產生的波譜,叫核磁共振波譜。 利用核磁共振波譜進行分析的方法,叫做核磁共振波譜法(NMR)。 從而可以看出,產生核磁共振波譜的必要條件有三條: 1·原子核必須具有核磁

    核磁共振波譜法的必要條件

    具有核磁性質的原子核(或稱磁性核或自旋核),在高強磁場的作用下,吸收射頻輻射,引起核自旋能級的躍遷所產生的波譜,叫核磁共振波譜。利用核磁共振波譜進行分析的方法,叫做核磁共振波譜法(NMR)。從而可以看出,產生核磁共振波譜的必要條件有三條:1·原子核必須具有核磁性質,即必須是磁性核 (或稱自旋核),有

    關于生物技術疫苗的基本介紹

      “生物技術疫苗”是利用生物技術制備的分子水平的疫苗,包括基因工程亞單位疫苗、合成肽疫苗、抗獨特性疫苗、基因工程活疫苗、DNA疫苗以及轉基因植物疫苗。

    關于核酸分子雜交技術的基本介紹

      由于核酸分子雜交的高度特異性及檢測方法的靈敏性,它已成為分子生物學中最常用的基本技術,被廣泛應用于基因克隆的篩選,酶切圖譜的制作,基因序列的定量和定性分析及基因突變的檢測等。

    關于超臨界萃取技術的基本介紹

      超臨界為超臨界流體,是介于氣液之間的一種既非氣態又非液態的物態,這種物質只能在其溫度和壓力超過臨界點時才能存在。超臨界流體的密度較大,與液體相仿,而它的粘度又較接近于氣體。因此超臨界流體是一種十分理想的萃取劑。  超臨界流體的溶劑強度取決于萃取的溫度和壓力。利用這種特性,只需改變萃取劑流體的壓力

    分子雜交技術的基本信息介紹

      互補的核苷酸序列通過Walson-Crick堿基配對形成穩定的雜合雙鏈分子DNA分子的過程稱為雜交。雜交過程是高度特異性的,可以根據所使用的探針已知序列進行特異性的靶序列檢測。  雜交的雙方是所使用探針和要檢測的核酸。該檢測對象可以是克隆化的基因組DNA,也可以是細胞總DNA或總RNA。根據使用

    關于層析分離技術的基本介紹

      各種不同的層析方法都涉及共同的基本特點:有一個固定相和流動相,當蛋白質混合溶液(流動相)通過裝有珠狀或基質材料的管或柱(固定相)時,由于混合物中各組份在物理化學性質(如吸引力、溶解度、分子的形狀與大小、分子的電荷性與親和力)等方面的差異使各組分在兩相間進行反復多次的分配而得以分開。流動相的流動取

    關于雜交瘤技術的基本介紹

      雜交瘤技術(hybridoma technique)  即淋巴細胞雜交瘤技術,又稱單克隆抗體技術。它是在體細胞融合技術基礎上發展起來的。克勒(Kohler)和米爾斯坦(Milstein)(1975)證明,骨髓瘤細胞與免疫的動物脾細胞融合,形成能分泌針對該抗原的均質的高特異性的抗體——單克隆抗體,

  • <option id="immmk"></option>
  • <noscript id="immmk"><kbd id="immmk"></kbd></noscript>
    伊人久久大香线蕉综合影院首页