• <option id="immmk"></option>
  • <noscript id="immmk"><kbd id="immmk"></kbd></noscript>

    蛋白質蛋白質相互作用理論預測和藥物設計新法獲進展

    11月29日,《美國國家科學院院刊》(PNAS)在線發表了中國科學院上海藥物研究所蔣華良課題組和美國萊斯大學(Rice University)José N. Onuchic 課題組合作的論文Elucidating the druggable interface of protein-protein interactions using fragment docking and coevolutionary analysis。 該項研究成果在可藥性蛋白質-蛋白質相互作用(PPI)界面預測與識別計算方法發展方面取得新進展。蛋白質-蛋白質相互作用在細胞命運決定、信號轉導等重要生命過程中起重要作用,也是疾病發生和發展的重要環節。因此,蛋白質-蛋白質相互作用界面已經成為新藥發現的重要靶標。然而,蛋白質界面具有作用面積大、相對平坦等特點,不利于藥物分子、特別是小分子藥物結合,使得基于蛋白質-蛋白質界面的藥物設計面臨嚴峻挑戰。因此,發展......閱讀全文

    分子探針還是分子鐵錘?

      這一期的《Nat. Chem. Biol.》有一篇題為“The promise and peril of chemical probes”的評論文章,二十幾個作者都是化學生物領頭人,其中包括Stuart Schreiber和Brian Shoichet這樣的大腕。文章回顧了早期分子探針的缺陷并對

    核酸基因分子探針

    從化學和生物學的意義上理解,探針是一種已知特異性的分子,它帶有合適的標記物供反應后檢測。探針和靶的相互反應如抗原-抗體、血凝素-碳水化合物、親合素-生物素、受體和配體,以及核酸與其互補核酸間的雜交等反應均屬此類。用核酸探針與待檢標本中核酸雜交,形成雜交體,再用呈色反應顯示。此方法用于疾病的診斷,稱為

    新型蛋白質分子探針-核酸適配體-治療高度惡性肺腺癌

      肺癌是發病率與死亡率最高的惡性腫瘤,而肺腺癌是肺癌的主要病理亞型。以EGFR抑制劑為代表的靶向治療及以PD1/PDL1靶向性抗體為代表的免疫治療極大地改善了肺腺癌病人的生存預后。然而,肺腺癌中惡性程度最高、以細胞快速增殖為主要特征的PP(Proximal-Proliferative)分子亞型肺腺

    核酸分子雜交探針的介紹

      若雜交的目的是識別靶DNA中的特異核苷酸序列,這需要牽涉到另一項核酸操作的基本技術─探針(probe)的制備。探針是指帶有某些標記物(如放射性同位素32P,熒光物質異硫氰酸熒光素等)的特異性核酸序列片段。若我們設法使一個核酸序列帶上32P,那么它與靶序列互補形成的雜交雙鏈,就會帶有放射性。以適當

    分子探針的概念和分類

    分子探針是指能精準回答生物醫學問題的功能性物質。分子探針是實現分子成像的先決條件和核心技術。分子影像技術的發展除了需要先進的成像設備外,還需要發展新型而高效的分子探針。分子探針種類繁多,根據成像設備的不同,分子探針分為光學、核醫學、磁學、聲學、光聲等不同種類。

    靶向探針精確操縱蛋白質

    北京大學化學與分子工程學院教授陳鵬正在實驗中。 作為生物體內含量最多的一類生物大分子,蛋白質是生物功能的主要執行者,在各種生命活動中扮演著關鍵角色。科學家一直在探索適用于活體環境的蛋白質操縱工具,以實現對目標蛋白質結構和功能的深入研究,這已經成為當今化學生物學領域的前沿熱點之一。 在

    “分子影像探針”平臺啟動建設

    2月8日,分子影像與醫學診療探針創新平臺在北京懷柔科學城啟動建設。該平臺是“十四五”北京市交叉研究平臺項目,也是我國生物醫學成像領域大科學工程、國家重大科技基礎設施——多模態跨尺度生物醫學成像設施項目工程的二期建設內容,建成后將助力成像設施全功能運行和技術轉化,更精準“看見”疾病發生全程,補齊國家生

    分子雜交基因探針的類型介紹

    分子雜交基因探針根據標記方法不同可粗分為放射性探針和非放射性探針兩大類,根據探針的核酸性質不同又可分為DNA探針,RNA探針,cDNA探針,cRNA探針及寡核苷酸探針等幾類,DNA探針還有單鏈和雙鏈之分。

    新型分子探針臨床轉化獲突破

       近日,北京協和醫院教授李方、博士張靜靜與美國國立衛生研究院教授陳小元等合作,在國際上首次報道了正電子核素68Ga-NEB新型分子探針在臨床轉化方面的新突破,為大血管疾病及惡性腫瘤患者的淋巴系統受侵犯程度的評估,提供了精準的術前探查、術中診斷及預后方法,在推進靶向治療的進一步精準化上顯現了突出優

    分子雜交技術RNA探針的相關介紹

      許多載體如pBluescript, pGEM等均帶有來自噬菌體SP6或E.coli噬菌體T7或T3的啟動子,它們能特異性地被各自噬菌體編碼的依賴于DNA的RNA聚合酶所識別,合成特異性的RNA。在反應體系中若加入經標記的NTP,則可合成RNA探針。RNA探針一般都是單鏈,它具有單鏈DNA探針的優

    分子雜交技術的核酸探針標記法

    核酸探針根據核酸的性質,可分為DNA和RNA探針;根據是否使用放射性標記物的與否,可分為放射性標記探針和非放射性標記探針;根據是否存在互補鏈,可分為單鏈和雙鏈探針;根據放射性標記物摻入情況,可分為均勻標記和末端標記探針。下面將介紹各種類型的探針及標記方法。 分子生物研究中,最常用的探針即為雙鏈DNA

    分子雜交基因所用DNA探針應用介紹

    DNA探針是最常用的核酸探針,指長度在幾百堿基對以上的雙鏈DNA或單鏈DNA探針。現已獲得DNA探針數量很多,有細菌、病毒、原蟲、真菌、動物和人類細胞DNA探針。這類探針多為某一基因的全部或部分序列,或某一非編碼序列。這些DNA片段須是特異的,如細菌的毒力因子基因探針和人類Alu探針。這些DNA探針

    蛋白質芯片技術探針的制備方法

    低密度蛋白質芯片的探針包括特定的抗原、抗體、酶、吸水或疏水物質、結合某些陽離子或陰離子的化學集團、受體和免疫復合物等具有生物活性的蛋白質。制備時常常采用直接點樣法,以避免蛋白質的空間結構改變。保持它和樣品的特異性結合能力。高密度蛋白質芯片一般為基因表達產物,如一個cDNA文庫所產生的幾乎所有蛋白質均

    蛋白質的內源熒光與熒光探針

    利用熒光光譜法研究蛋白質一般有兩種方法。一是測定蛋白質分子的自身熒光(內源熒光),另一種是當蛋白質本身不能發射熒光時,通過非共價吸附或共價作用向蛋白質分子的特殊部位引入外源熒光(也稱熒光探針),然后測定外源熒光物質的熒光。 ?蛋白質的內源熒光 含有芳香族氨基酸(色氨酸(tryptophan?,Trp

    分子影像研究中分子探針技術的應用的領域有哪些?

     1.分子標的照影(molecular-targetingimaging):其將所對感興趣疾病蛋白質具有專一性結合力之抗體或勝肽,予以標誌螢光、冷光、放射核種、順磁性物質及微氣泡粒子作為分子探針(molecularprobe)并且搭配其互補照影系統如活體光學影像系統(invivoopticalima

    應加速研制新一代分子探針

      近日,香山科學會議第554次學術討論會在北京召開。此次會議以“醫學分子探針關鍵技術”為主題。與會專家認為,目前,我國對進口醫學分子探針尚存依賴,為打破這一局面,應加速研制高特異性、高靶向性、智能化、高靈敏度的新一代分子探針。  為了更全面、更完整地獲取生物體解剖結構水平、功能代謝水平和細胞分子水

    蛋白質分子的組成

    ? 一、蛋白質的元素組成  單純蛋白質的元素組成為碳50~55%、氫6%~7%、氧19%~24%、氮13%~19%,除此之外還有硫0~4%。有的蛋白質含有磷、碘。少數含鐵、銅、鋅、錳、鈷、鉬等金屬元素。  各種蛋白質的含氮量很接近,平均為16%。由于體內組織的主要含氮物是蛋白質,因此,只要測定生物樣

    蛋白質的內源性熒光與熒光探針

      利用熒光光譜法研究蛋白質一般有兩種方法。一是測定蛋白質分子的自身熒光(內源熒光),另一種是當蛋白質本身不能發射熒光時,通過非共價吸附或共價作用向蛋白質分子的特殊部位引入外源熒光(也稱熒光探針),然后測定外源熒光物質的熒光。   蛋白質的內源熒光  含有芳香族氨基酸(色氨酸(tryptophan

    分子雜交RNA探針的技術特點及應用介紹

    在DNA序列未知而必須首先進行克隆以便繪制酶譜和測序時,也常應用克隆。克隆探針一般較寡核苷酸探針特異性強,復雜度也高,從統計學角度而言,較長的序列隨機碰撞互補序列的機會較短序列少,克隆探針的另一優點是,可獲得較強的雜交信號,因為克隆探針較寡核苷酸探針摻入的可檢測標記基因更多。但是,較長的探針對于靶序

    分子雜交RNA探針的技術特點及應用介紹

    RNA探針是一類很有前途的核酸探針,由于RNA是單鏈分子,所以它與靶序列的雜交反應效率極高。早期采用的RNA探針是細胞mRNA探針和病毒RNA探針,這些RNA是在細胞基因轉錄或病毒復制過程中得到標記的,標記效率往往不高,且受到多種因素的制約。這類RNA探針主要用于研究目的,而不是用于檢測。例如,在篩

    分子雜交CDNA探針的技術特點及應用介紹

    cDNA(complementary DNA)是指互補于mRNA的DNA分子。cDNA是由RNA經一種稱為逆轉錄酶(reversetranscriptase)的DNA聚合酶催化產生的,這種逆錄酶是Temin等在70年代初研究致癌RNA病毒時發現的。該酶以RNA為模板,根據堿基配對原則,按照RNA的核

    新型分子影像探針助力卵巢癌精準診治

    卵巢癌是致死率最高的婦科腫瘤,絕大多數患者會經歷復發,從鉑敏感發展為鉑耐藥。因此,對于鉑類敏感復發的治療管理尤為重要。 近日,復旦大學附屬腫瘤醫院核醫學科主任宋少莉教授團隊和復旦大學附屬腫瘤醫院婦瘤科主任吳小華教授團隊合作,在《歐洲核醫學和分子成像雜志》(EJNMMI)在線發表論文,全球首次證實

    “分子診斷萬花筒”——新型雙向置換熒光探針

    隨著化學合成核酸技術的不斷發展,利用核酸探針進行相關研究已成為當今生物和醫學領域常用分子生物學技術之一。核酸熒光探針則是對特定的核酸探針進行熒光基團標記,通過記錄熒光信號的變化來分析和檢測對應目標分子的一種核酸探針形式。作為最常用的信號轉導媒介,核酸熒光探針具備分析靈敏度高、檢測手段簡單和對生物分子

    分子探針紅外之—固體表面酸性的測定

      本期給大家普及一種可以分析不同強度Lewis酸的分子探針紅外光譜技術——乙腈紅外光譜。相較于吡啶紅外光譜,乙腈紅外光譜技術略顯“小眾”。不過,作為一種吸附質紅外光譜技術,它憑借自身的特點在一定程度上彌補了吡啶紅外光譜的不足。特別是在面對一些需要精細解析表面酸強度的材料時,乙腈紅外能很好地展現出它

    JBC:分子伴侶幫助蛋白質折疊的分子機理

      分子伴侶是一種協助蛋白質進行折疊的分子助手,其中一種伴侶分子是所謂的熱激蛋白60(Hsp60),這種蛋白可以在線粒體中形成一種類似于“桶狀”的結構,從而便于蛋白折疊過程的發生,近日刊登于the Journal of Biological Chemistry上的一篇研究論文中,來自弗萊堡大學的研究

    球狀蛋白質的分子特性

      球狀蛋白質分子形狀接近球形,水溶性較好,種類很多,可行使多種多樣的生物學功能。具有球形或近于橢球體分子形狀的蛋白質之總稱。是纖維狀蛋白質的對應詞。凡不屬于纖維狀蛋白質,而一般的單純蛋白質(清蛋白、球蛋白等)和許多復合蛋白質均屬于此類,與纖維狀蛋白質相比,溶液的粘度低,流動雙折射弱。

    球狀蛋白質的分子特性

    球狀蛋白質分子形狀接近球形,水溶性較好,種類很多,可行使多種多樣的生物學功能。具有球形或近于橢球體分子形狀的蛋白質之總稱。是纖維狀蛋白質的對應詞。凡不屬于纖維狀蛋白質,而一般的單純蛋白質(清蛋白、球蛋白等)和許多復合蛋白質均屬于此類,與纖維狀蛋白質相比,溶液的粘度低,流動雙折射弱。

    蛋白質根據蛋白質分子的外形進行分類

    1.球狀蛋白質分子形狀接近球形,水溶性較好,種類很多,可行使多種多樣的生物學功能。2.纖維狀蛋白質分子外形呈棒狀或纖維狀,大多數不溶于水,是生物體重要的結構成分,或對生物體起保護作用。3.膜蛋白質一般折疊成近球形,插入生物膜,也有一些通過非共價鍵或共價鍵結合在生物膜的表面。生物膜的多數功能是通過膜蛋

    分子探針為乳腺癌基因描繪“顯像圖”

      近日,黑龍江省哈爾濱醫科大學附屬第四醫院核醫學科趙長久、付鵬等人在國家自然科學基金支持下,成功建立了一種快速、準確、及時、無創性地評價乳腺癌小鼠雙微體擴增基因(MDM2)表達程度的影像學方法,使乳腺癌在分子水平發生改變的“早早期”被診斷成為可能。此項成果日前刊發于《美國核醫學》雜志。   有文

    關于活性氧分子熒光探針標記法的應用

    眾所周知,氧氣是生命運動過程中不可缺少的一種氣體,而細胞使用氧氣時會產生副產品,以高能氧氣分子形式存在的廢棄物質即為自由基。自由基會對人體組織和細胞結構造成損害,我們把這種損害稱為氧化應激,人體在利用氧氣過程中會加重自身的壓力。活性氧(ROS)是含有氧的化學活性分子,ROS是需氧細胞在代謝過程中產生

  • <option id="immmk"></option>
  • <noscript id="immmk"><kbd id="immmk"></kbd></noscript>
    伊人久久大香线蕉综合影院首页