β折疊的定義
在β折疊中,兩條以上氨基酸鏈(肽鏈),或同一條肽鏈之間的不同部分形成平行或反平行排列,成為“股”。......閱讀全文
β折疊的定義
在β折疊中,兩條以上氨基酸鏈(肽鏈),或同一條肽鏈之間的不同部分形成平行或反平行排列,成為“股”。
重折疊的定義
中文名稱重折疊英文名稱refolding定 義解折疊或錯折疊的結構,重新變成有活性的立體結構的過程。應用學科生物化學與分子生物學(一級學科),總論(二級學科)
DNA錯折疊的定義
中文名稱錯折疊英文名稱misfolding定 義在特定條件下,包括一些病理的條件,線性的長鏈生物大分子形成沒有活性和僅有部分活性的立體結構的折疊過程。應用學科生物化學與分子生物學(一級學科),總論(二級學科)
DNA解折疊的定義
中文名稱解折疊英文名稱unfolding定 義天然的有活性的生物分子因內部的非共價鍵的改變而偏離原有立體結構的過程。應用學科生物化學與分子生物學(一級學科),總論(二級學科)
β折疊的作用
能形成β折疊的氨基酸殘基一般不大,而且不帶同種電荷,這樣有利于多肽鏈的伸展,如甘氨酸、丙氨酸在β折疊中出現的幾率最高。免疫球蛋白有大量的β折疊層。另一種常見的蛋白質模序是α螺旋和三種不同的β轉角。不屬于一個模序的蛋白質一級結構部分被稱之為不規則螺旋。這些部分對蛋白質的空間構象非常重要。
β折疊的結構
肽平面之間呈手風琴狀折疊,股與股之間會通過氫鍵固定,但氫鍵主要在股間而不是股內。氨基酸殘基的R側鏈分布在片層的上下。β折疊層并不是平的,因為側鏈的存在使得它看上去像手風琴一樣波紋起伏。(英語pleated)這樣每一股會更緊密排列,氫鍵更容易建立。氫鍵的距離為7埃。在蛋白質結構中β折疊通常會用箭頭表示
β折疊的結構
肽平面之間呈手風琴狀折疊,股與股之間會通過氫鍵固定,但氫鍵主要在股間而不是股內。氨基酸殘基的R側鏈分布在片層的上下。β折疊層并不是平的,因為側鏈的存在使得它看上去像手風琴一樣波紋起伏。這樣每一股會更緊密排列,氫鍵更容易建立。氫鍵的距離為7埃。在蛋白質結構中β折疊通常會用箭頭表示。肽鏈的氮端在同側為順
鏈折疊的結構
鏈折疊,是指凱勒(Keller)提出的折疊鏈模型。即分子鏈頃向于聚集在一起形成鏈束,分子鏈規整排列的鏈束細而長,表面能很大,不穩定。會自發的折疊成帶狀結構。也有一種說法是鏈折疊是直接以單根分子鏈(而不是鏈束)進行的。單晶的電子衍射圖研究認為分子鏈的方向是垂直于晶片表面,鏈在晶片厚度范圍內來回折疊。
β折疊的結構特點
在β折疊中,兩條以上氨基酸鏈(肽鏈),或同一條肽鏈之間的不同部分形成平行或反平行排列,成為“股”。
折疊酶的作用
目前研究最為廣泛的是脂肪酶特異折疊酶(lipase specific foldase,LIFs),此類酶多存在于革蘭氏陰性菌中輔助相應的脂肪酶進行二級結構的折疊,通過降低折疊過程中的能障與構象改變為靶蛋白的正確折疊提供必要的空間立體信息而幫助其活性構象的形成。研究證明,脂肪酶在無LIFs存在下可進行
β折疊的主要作用
能形成β折疊的氨基酸殘基一般不大,而且不帶同種電荷,這樣有利于多肽鏈的伸展,如甘氨酸、丙氨酸在β折疊中出現的幾率最高。免疫球蛋白有大量的β折疊層。另一種常見的蛋白質模序是α螺旋和三種不同的β轉角。不屬于一個模序的蛋白質一級結構部分被稱之為不規則螺旋。這些部分對蛋白質的空間構象非常重要。
折疊酶的結構
LIFs的結構由三部分組成N-末端跨膜疏水結構域,中間一段富含脯氨酸和丙氨酸的高度可變的中間鉸鏈區與C-末端催化結構域。LIFs通過N-末端的疏水跨膜結構域錨定在內膜上,使Q-末端的活性結構域游離于周質中。N-末端的疏水跨膜結構域對其折疊活性沒有影響,主要是負責將LIFs錨定在內膜上,防止其與脂肪酶
鏈折疊性質
鏈折疊現象對結晶聚合物的行為非常重要,因而必須仔細考察鏈折疊結晶的情況。首先,一般認為,在許多聚合物中,鏈折疊沒有多大的困難。對聚合物分予模型的麥察表明,大多數聚合物分子都會折疊起來,比較容易形成一種很致密的足以嵌砌到晶體表面的折疊,但是,化學結構比較復雜的聚合物,如主鏈上有龐大側基或環以及分子鏈為
RNA折疊的結構特點
中文名稱RNA折疊英文名稱RNA folding定 義新合成的或變性的RNA轉變為特定的、成熟的三維結構構象的過程。應用學科生物化學與分子生物學(一級學科),核酸與基因(二級學科)
折疊酶的結構特點
LIFs的結構由三部分組成N-末端跨膜疏水結構域,中間一段富含脯氨酸和丙氨酸的高度可變的中間鉸鏈區與C-末端催化結構域。LIFs通過N-末端的疏水跨膜結構域錨定在內膜上,使Q-末端的活性結構域游離于周質中。N-末端的疏水跨膜結構域對其折疊活性沒有影響,主要是負責將LIFs錨定在內膜上,防止其與脂肪酶
“阿爾法折疊3”來了
科技日報北京5月8日電?(記者張夢然)《自然》8日報道了結構生物學最新進展——阿爾法折疊3的問世。它能以高準確率預測蛋白質與其他生物分子相互作用的結構。這種用計算機解析蛋白質與其他分子復雜相互作用的能力,將拓展人們對生物過程的理解,并有望推動藥物研發。阿爾法折疊于2020年問世,它和迭代版阿爾法折疊
折疊基因檢測作用
通過基因檢測,可向人們提供個性化健康指導服務、個性化用藥指導服務和個性化體檢指導服務。就可以在疾病發生之前的幾年、甚至幾十年進行準確的預防,而不是盲目的保健;人們可以通過調整膳食營養、改變生活方式、增加體檢頻度、接受早期診治等多種方法,有效地規避疾病發生的環境因素。基因檢測不僅能提前告訴我們有多高的
蛋白質折疊的過程
主要結構蛋白質的主要結構及其線性氨基酸序列決定了其天然構象。特定氨基酸殘基及其在多肽鏈中的位置是決定因素,蛋白質的某些部分緊密折疊在一起并形成其三維構象。氨基酸組成不如序列重要。然而,折疊的基本事實仍然是,每種蛋白質的氨基酸序列都包含指定天然結構和達到該狀態的途徑的信息。這并不是說幾乎相同的氨基酸序
關于折疊酶的結構介紹
LIFs的結構由三部分組成N-末端跨膜疏水結構域,中間一段富含脯氨酸和丙氨酸的高度可變的中間鉸鏈區與C-末端催化結構域。LIFs通過N-末端的疏水跨膜結構域錨定在內膜上,使Q-末端的活性結構域游離于周質中。N-末端的疏水跨膜結構域對其折疊活性沒有影響,主要是負責將LIFs錨定在內膜上,防止其與脂
RNA折疊的基本信息
中文名稱RNA折疊英文名稱RNA folding定 義新合成的或變性的RNA轉變為特定的、成熟的三維結構構象的過程。應用學科生物化學與分子生物學(一級學科),核酸與基因(二級學科
關于折疊酶的作用簡介
目前研究最為廣泛的是脂肪酶特異折疊酶(lipase specific foldase,LIFs),此類酶多存在于革蘭氏陰性菌中輔助相應的脂肪酶進行二級結構的折疊,通過降低折疊過程中的能障與構象改變為靶蛋白的正確折疊提供必要的空間立體信息而幫助其活性構象的形成。研究證明,脂肪酶在無LIFs存在下可
關于基因表達的折疊的介紹
剛從mRNA序列翻譯過來的蛋白質都是未折疊或無規卷曲的多肽,沒有任何的三維結構。氨基酸彼此相互作用使得多肽從無規卷曲折疊成其特征性和功能性三維結構。氨基酸序列決定l了蛋白質的三維結構,且正確的三維結構對于功能至關重要,盡管功能蛋白的某些部分可能仍未展開。伴侶蛋白的酶有助于新形成的蛋白質獲得折疊,
細胞化學詞匯?RNA折疊
中文名稱:RNA折疊英文名稱:RNA folding定 義:新合成的或變性的RNA轉變為特定的、成熟的三維結構構象的過程。應用學科:生物化學與分子生物學(一級學科),核酸與基因(二級學科)
細胞化學基礎β折疊鏈
在β折疊中,兩條以上氨基酸鏈(肽鏈),或同一條肽鏈之間的不同部分形成平行或反平行排列,成為“股”。
PNAS:新探針量化細胞內折疊和錯誤折疊蛋白水平
美國Scripps研究所(TSRI)的科學家發明了一種小分子折疊探針,可在不同條件下量化細胞內正常折疊的功能性蛋白,以及疾病相關的錯誤折疊目的蛋白。 科學家們長期以來都需要更好的工具在細胞內進行這種測量,因為蛋白質錯誤折疊是組織損傷的一個主要原因。以過多蛋白錯誤折疊為特征的疾病,折磨著全球
折疊口罩機的相關選擇介紹
隨著經濟的快速發展,環境的日益惡化,空氣質量越來越差,各種各樣的空氣污染問題受到了社會的極大關注,人們也越來越重視自身健康的防護。 其中,顯而易見的現象之一是不少市民養成了出門使用口罩的習慣。 但是,目前市面上口罩的品種混亂且價格差異大,如果選擇不正確,反而會對自身的健康帶來危害。
蛋白質折疊的主要結構
蛋白質的主要結構及其線性氨基酸序列決定了其天然構象。特定氨基酸殘基及其在多肽鏈中的位置是決定因素,蛋白質的某些部分緊密折疊在一起并形成其三維構象。氨基酸組成不如序列重要。然而,折疊的基本事實仍然是,每種蛋白質的氨基酸序列都包含指定天然結構和達到該狀態的途徑的信息。這并不是說幾乎相同的氨基酸序列總是相
蛋白質的新生肽鏈的折疊
近年來,對蛋白質的新生肽鏈在體內的折疊研究已成為一個熱點,發現了許多幫助肽鏈折疊的蛋白質,其中有些有利于二硫鍵的交換和配對(二硫鍵異構酶)與脯氨酰參與的肽鍵的異構化(肽基脯氨酰異構酶),還有一大類被稱為蛋白質伴侶。后者的主要特點是能和疏水性的肽段結合,一方面避免肽鏈因疏水作用而聚集,另一方面幫助新生
“納米衛星”能探索RNA折疊
原文地址:http://news.sciencenet.cn/htmlnews/2023/3/495017.shtm 科技日報北京3月1日電 (記者張佳欣)RNA分子可以折疊成復雜的分子機器。受天然RNA機器的啟發,丹麥奧爾胡斯大學研究人員開發了一種名為“RNA折紙”的方法,這使得人工設計出從單
“納米衛星”能探索RNA折疊
RNA分子可以折疊成復雜的分子機器。受天然RNA機器的啟發,丹麥奧爾胡斯大學研究人員開發了一種名為“RNA折紙”的方法,這使得人工設計出從單一RNA支架折疊而來的納米結構成為可能。 發表在新一期《自然·納米技術》上的這篇研究論文描述了如何使用RNA折紙技術來設計RNA納米結構,這些結構由丹麥低