• <option id="immmk"></option>
  • <noscript id="immmk"><kbd id="immmk"></kbd></noscript>

    激光拉曼光譜法的相關解釋

    激光光源的拉曼光譜法。應用激光具有單色性好、方向性強、亮度高、相干性好等特性,與表面增強拉曼效應相結合,便產生了表面增強拉曼光譜。其靈敏度比常規拉曼光譜可提高104~107倍,加之活性載體表面選擇吸附分子對熒光發射的抑制,使分析的信噪比大大提高。拉曼光譜儀與紅外光譜儀的檢測原理大不相同。 激光拉曼光譜法 拼音:jiguanglamanguangpufa 英文名稱:laser Raman spectrometry 說明:已應用于生物、藥物及環境分析中痕量物質的檢測。共振拉曼光譜是建立在共振拉曼效應基礎上的另一種激光拉曼光譜法。共振拉曼效應產生于激發光頻率與待測分子的某個電子吸收峰接近或重合時,這一分子的某個或幾個特征拉曼譜帶強度可達到正常拉曼譜帶的104~106倍,有利于低濃度和微量樣品的檢測。已用于無機、有機、生物大分子、離子乃至活體組成的測定和研究。激光拉曼光譜與傅里葉變換紅外光譜相配合,已成為分子結構研究的主要......閱讀全文

    激光拉曼光譜法的相關解釋

       激光光源的拉曼光譜法。應用激光具有單色性好、方向性強、亮度高、相干性好等特性,與表面增強拉曼效應相結合,便產生了表面增強拉曼光譜。其靈敏度比常規拉曼光譜可提高104~107倍,加之活性載體表面選擇吸附分子對熒光發射的抑制,使分析的信噪比大大提高。拉曼光譜儀與紅外光譜儀的檢測原理大不相同。  激

    激光共振拉曼光譜法的相關介紹

      激光共振拉曼光譜(RRS)產生激光頻率與待測分子的某個電子吸收峰接近或重合時,這一分子的某個或幾個特征拉曼譜帶強度可達到正常拉曼譜帶的104~106倍,并觀察到正常拉曼效應中難以出現的、其強度可與基頻相比擬的泛音及組合振動光譜。與正常拉曼光譜相比,共振拉曼光譜靈敏度高,結合表面增強技術,靈敏度已

    激光拉曼光譜法

    拉曼光譜能夠準確地測定水合物中不同的籠中的氣體分子的拉曼振動強度,且拉曼強度與分子的數量成正比。由于水合物中不同類型的籠子的大小不同,氣體分子與組成籠子的水分子之間的作用力不同,故在不同籠中的分子的拉曼位移是不同的。由于I型水合物的大籠(51262)數量是小籠(512)的3倍,Ⅱ型水合物的大籠(51

    激光拉曼光譜法

    拉曼光譜能夠準確地測定水合物中不同的籠中的氣體分子的拉曼振動強度,且拉曼強度與分子的數量成正比。由于水合物中不同類型的籠子的大小不同,氣體分子與組成籠子的水分子之間的作用力不同,故在不同籠中的分子的拉曼位移是不同的。由于I型水合物的大籠(51262)數量是小籠(512)的3倍,Ⅱ型水合物的大籠(51

    激光拉曼光譜法的應用

    激光拉曼光譜法的應用有以下幾種:在有機化學上的應用、在高聚物上的應用、在生物方面上的應用、在表面和薄膜方面的應用。 在有機化學上的應用拉曼光譜在有機化學方面主要是用作結構鑒定的手段,拉曼位移的大小、強度及拉曼峰形狀是確定化學鍵、官能團的重要依據。利用偏振特性,拉曼光譜還可以作為順反式結構判斷的依據。

    激光拉曼光譜法的應用

      激光拉曼光譜法的應用有以下幾種:在有機化學上的應用,在高聚物上的應用,在生物方面上的應用,在表面和薄膜方面的應用。  有機化學:拉曼光譜在有機化學方面主要是用作結構鑒定的手段,拉曼位移的大小、強度及拉曼峰形狀是碇化學鍵、官能團的重要依據。利用偏振特性,拉曼光譜還可以作為順反式結構判斷的依據。  

    概述激光拉曼光譜法的應用

      激光拉曼光譜法的應用有以下幾種:在有機化學上的應用,在高聚物上的應用,在生物方面上的應用,在表面和薄膜方面的應用。  有機化學:拉曼光譜在有機化學方面主要是用作結構鑒定的手段,拉曼位移的大小、強度及拉曼峰形狀是碇化學鍵、官能團的重要依據。利用偏振特性,拉曼光譜還可以作為順反式結構判斷的依據。  

    激光拉曼光譜法的檢測原理

      紅外光譜法的檢測直接用紅外光檢測處于紅外區的分子的振動和轉動能量:用一束波長連續的紅外光透過樣 品,檢測樣品對紅外光的吸收情況;而拉曼光譜法的檢測是用可見激光(也有用紫外激光或近紅外激光進行檢測)來檢測處于紅外區的分子的振動和轉動能量,它是 一種間接的檢測方法:把紅外區的信息變到可見光區,并通過

    激光拉曼光譜法的檢測原理

    紅外光譜法的檢測直接用紅外光檢測處于紅外區的分子的振動和轉動能量:用一束波長連續的紅外光透過樣 品,檢測樣品對紅外光的吸收情況;而拉曼光譜法的檢測是用可見激光(也有用紫外激光或近紅外激光進行檢測)來檢測處于紅外區的分子的振動和轉動能量,它是 一種間接的檢測方法:把紅外區的信息變到可見光區,并通過差頻

    應用激光光源的拉曼光譜法

      應用激光具有單色性好、方向性強、亮度高、相干性好等特性,與表面增強拉曼效應相結合,便產生了表面增強拉曼光譜。其靈敏度比常規拉曼光譜可提高104~107倍,加之活性載體表面選擇吸附分子對熒光發射的抑制,使分析的信噪比大大提高。已應用于生物、藥物及環境分析中痕量物質的檢測。共振拉曼光譜是建立在共振拉

    應用激光光源的拉曼光譜法

      應用激光具有單色性好、方向性強、亮度高、相干性好等特性,與表面增強拉曼效應相結合,便產生了表面增強拉曼光譜。其靈敏度比常規拉曼光譜可提高104~107倍,加之活性載體表面選擇吸附分子對熒光發射的抑制,使分析的信噪比大大提高。已應用于生物、藥物及環境分析中痕量物質的檢測。共振拉曼光譜是建立在共振拉

    應用激光光源的拉曼光譜法

    應用激光具有單色性好、方向性強、亮度高、相干性好等特性,與表面增強拉曼效應相結合,便產生了表面增強拉曼光譜。其靈敏度比常規拉曼光譜可提高104~107倍,加之活性載體表面選擇吸附分子對熒光發射的抑制,使分析的信噪比大大提高。已應用于生物、藥物及環境分析中痕量物質的檢測。共振拉曼光譜是建立在共振拉曼效

    拉曼激光安全眼鏡

    不影響可視性的激光保護拉曼激光安全眼鏡能提供出色的激光防護,同時又不會犧牲眼鏡的可視性或舒適度。這款眼鏡適合直接觀測和漫觀測,符合EN207標準并通過了CE認證,采用吸收染料制成,能最大限度提升顏色識別度和可見光透射度(VLT)。可提供適合各種拉曼激光的型號,包括532nm、638nm、785nm、

    激光拉曼光譜原理

       拉曼光譜法是研究化合物分子受光照射后所產生的散射,散射光與入射光能級差和化合物振動頻率、轉動頻率的關系的分析方法。 與紅外光譜類似,拉曼光譜是一種振動光譜技術。所不同的是,前者與分子振動時偶極矩變化相關,而拉曼效應則是分子極化率改變的結果,被測量的是非彈性的散射輻。    激光拉曼光譜原理:

    激光拉曼光譜定義

    拉曼光譜法是研究化合物分子受光照射后所產生的散射,散射光與入射光能級差和化合物振動頻率、轉動頻率的關系的分析方法。 與紅外光譜類似,拉曼光譜是一種振動光譜技術。所不同的是,前者與分子振動時偶極矩變化相關,而拉曼效應則是分子極化率改變的結果,被測量的是非彈性的散射輻。定義:拉曼光譜法是研究化合物分子受

    激光拉曼光譜的原理

    一定波長的電磁波作用于被研究物質的分子,引起分子相應能級的躍遷,產生分子吸收光譜。引起分子電子能級躍遷的光譜稱電子吸收光譜,其波長位于紫外~可見光區,故稱紫外-可見光譜。電子能級躍遷的同時伴有振動能級和轉動能級的躍遷。引起分子振動能級躍遷的光譜稱振動光譜,振動能級躍遷的同時伴有轉動能級的躍遷。拉曼散

    激光拉曼光譜的原理

    一定波長的電磁波作用于被研究物質的分子,引起分子相應能級的躍遷,產生分子吸收光譜。引起分子電子能級躍遷的光譜稱電子吸收光譜,其波長位于紫外~可見光區,故稱紫外-可見光譜。電子能級躍遷的同時伴有振動能級和轉動能級的躍遷。引起分子振動能級躍遷的光譜稱振動光譜,振動能級躍遷的同時伴有轉動能級的躍遷。拉曼散

    激光顯微共焦拉曼光譜儀的拉曼效應

      光散射是自然界常見的現象。晴朗的天空之所以呈藍色、早晚東西方的空中之所以出現紅色霞光等,都是由于光發生散射而形成了不同的景觀。拉曼光譜是一種散射光譜。在實驗室中,我們通過一個很簡單的實驗就能觀察到拉曼效應。在一暗室內,以一束綠光照射透明液體,例如戊烷,綠光看起來就像懸浮在液體上。若通過對綠光或藍

    激光拉曼和傅里葉變換拉曼光譜儀的比較

    拉曼光譜儀按照激發光源與分光系統的不同可分為兩大類:色散型拉曼光譜儀 (簡稱激光拉曼) 和傅里葉變換拉曼光譜儀 (簡稱傅變拉曼)。前者采用短波的可見光激光器激發、光柵分光系統,近年向著更短的紫外激光器發展;后者則采用長波的近紅外激光器激發、邁克爾遜干涉儀調制分光等技術。激光拉曼和傅變拉曼由于在儀器的

    激光顯微共焦拉曼光譜儀的激光器相關介紹

      激光器主要提供激發光源。激光器用作拉曼光譜的激發光源對拉曼光譜術的快速發展起到了至關重要的作用。由于拉曼散射很弱,要求的光源強度大,而激光器提供的激發光源具有極高的亮度、方向性強、譜線寬度十分狹小以及發散度極小,可傳輸很長的距離而保持高亮度。因此,一般用激光器提供激發光源。  激光器種類很多,常

    激光拉曼光譜儀

    激光拉曼光譜儀是一個集合了激光光譜學、精密機械和微電子系統的綜合測量體系。其最終結果是獲得散射介質在一定方向上具有一定偏振態的散射光強隨頻率分布的譜圖。 激光拉曼光譜儀分析是一種非破壞性的微區分析手段,液體、粉末及各種固體樣品均不需特殊處理即可用于拉曼光譜的測定。拉曼光譜可以單獨,或與其他技術(如X

    綠松石的激光拉曼光譜研究

    摘 要 對湖北、安徽地區綠松石進行了激光拉曼光譜測試分析。結果表明, 綠松石中H2O , OH - 及PO3 -4的基團振動是導致其激光拉曼光譜形成的主要原因。3 510~3 440 cm- 1 的譜峰是由ν(OH) 伸縮振動所致,其中ν(OH) 振動導致的強拉曼特征譜峰在3 470 cm- 1附近

    從微區拉曼到現代的激光共聚焦顯微拉曼

      拉曼微區探針(微區拉曼)是把顯微鏡和拉曼光譜聯系起來,測得的拉曼光譜具有較高的精確性,可以用來進行表面光譜學研究,發現與組分化學性質有關的表面均一性。  拉曼微區探針的概念最早是由Tomas Hirshfled在1969年提出的。圖1給出了第一臺成功的拉曼顯微鏡示意圖。它把常規顯微鏡和配有高靈敏

    拉曼光譜相關信息

    相關信息電化學原位拉曼光譜法, 是利用物質分子對入射光所產生的頻率發生較大變化的散射現象, 將單色入射光(包括圓偏振光和線偏振光) 激發受電極電位調制的電極表面, 通過測定散射回來的拉曼光譜信號(頻率、強度和偏振性能的變化)與電極電位或電流強度等的變化關系。一般物質分子的拉曼光譜很微弱,

    簡介激光顯微共焦拉曼光譜儀拉曼位移

      在透明介質散射光譜中,入射光子與分子發生非彈性散射,分子吸收頻率為ν0 的光子,發射ν0-ν1的光子,同時電子從低能態躍遷到高能態(斯托克斯線);分子吸收頻率為ν0的光子,發射ν0+ν1的光子,同時電子從高能態躍遷到低能態(反斯托克斯線)。靠近瑞利散射線的兩側出現的譜線稱為小拉曼光譜;遠離瑞利散

    拉曼不同波段激光優缺點

    不同波段激光優缺點理論上,紫外拉曼光譜和可見光拉曼光譜沒有什么不同之處。但對于某些特定樣品來說,紫外激光與樣品相互作用的方式與可見激光不同,如表2中示。此外,紫外和近紅外都可抑制熒光但是原理上是有差別的。如圖2所示,因為在紫外激發下拉曼信號和熒光信號在不同的光譜區域,不會受到干擾。而使用可見激光激發

    激光拉曼光譜儀(圖)

    一、拉曼散射的發展歷史1928年,印度物理學家拉曼用水銀燈照射苯液體,發現了新的輻射譜線:在入射光頻率ω0的兩邊出現呈對稱分布的,頻率為ω0-ω和ω0+ω的明銳邊帶,這是屬于一種新的分子輻射,稱為拉曼散射,其中ω是介質的元激發頻率。拉曼因發現這一新的分子輻射和所取得的許多光散射研究成果而獲得了193

    電化學原位拉曼光譜法

      電化學原位拉曼光譜法,是利用物質分子對入射光所產生的頻率發生較大變化的散射現象,將單色入射光(包括:圓偏振光和線偏振光)激發受電極電位調制的電極表面,通過測定散射回來的拉曼光譜信號(頻率、強度和偏振性能的變化)與電極電位或電流強度等的變化關系。一般物質分子的拉曼光譜很微弱,為了獲得增強的信號,可

    電化學原位拉曼光譜法

    電化學原位拉曼光譜法, 是利用物質分子對入射光所產生的頻率發生較大變化的散射現象, 將單色入射光(包括圓偏振光和線偏振光)激發受電極電位調制的電極表面, 通過測定散射回來的拉曼光譜信號(頻率、強度和偏振性能的變化)與電極電位或電流強度等的變化關系。一般物質分子的拉曼光譜很微弱, 為了獲得增強的信號,

    電化學原位拉曼光譜法

      電化學原位拉曼光譜法,是利用物質分子對入射光所產生的頻率發生較大變化的散射現象,將單色入射光(包括:圓偏振光和線偏振光)激發受電極電位調制的電極表面,通過測定散射回來的拉曼光譜信號(頻率、強度和偏振性能的變化)與電極電位或電流強度等的變化關系。一般物質分子的拉曼光譜很微弱,為了獲得增強的信號,可

  • <option id="immmk"></option>
  • <noscript id="immmk"><kbd id="immmk"></kbd></noscript>
    伊人久久大香线蕉综合影院首页