• <option id="immmk"></option>
  • <noscript id="immmk"><kbd id="immmk"></kbd></noscript>
    發布時間:2019-04-21 16:11 原文鏈接: QuantitatingRNA

    RNA quantitation is an important and necessary step prior to most RNA analysis methods. Here we discuss three common methods used to quantitate RNA and tips for optimizing each of these methods.

    UV Spectroscopy 
    The traditional method for assessing RNA concentration and purity is UV spectroscopy. The absorbance of a diluted RNA sample is measured at 260 and 280 nm. The nucleic acid concentration is calculated using the Beer-Lambert law, which predicts a linear change in absorbance with concentration (Figure 1).

    Figure 1. Beer-Lambert Law for Calculating UV Absorbance by Nucleic Acid.
    BLANK/DILUENTA260/A280RATIODEPC-treated water (pH 5-6)1.60Nuclease-free water (pH 6-7)1.85TE (pH 8.0)2.14
    Figure 2. Effects of pH on A260/A280Ratio.

    Using this equation, an A260 reading of 1.0 is equivalent to ~40 μg/ml single-stranded RNA.The A260/A280 ratio is used to assess RNA purity. An A260/A280 ratio of 1.8-2.1 is indicative of highly purified RNA.

    UV spectroscopy is the most widely used method to quantitate RNA. It is simple to perform, and UV spectrophotometers are available in most laboratories. The method does have several drawbacks, but they can be minimized by following these tips:

    Tips for Optimizing Performance

    • Because this method does not discriminate between RNA and DNA, it is advisable to first treat RNA samples with RNase-free DNase to remove contaminating DNA. 

    • Other contaminants such as residual proteins and phenol can interfere with absorbance readings, so care must be taken during RNA purification to remove them. 

    • Sample readings are made in quartz cuvettes. Dirty cuvettes and dust particles cause light scatter at 320 nm which can impact absorbance at 260 nm. Since neither proteins nor nucleic acids absorb at 320 nm, perform a background correction by making readings from a blank (diluent only) at 320 nm, as well as 260 nm and 280 nm. 

    • The A260/A280 ratio is dependent on both pH and ionic strength. As pH increases, the A280 decreases while the A260 is unaffected. This results in an increasing A260/A280 ratio (Wilfinger, et. al 1997). Because water often has an acidic pH, it can lower the A260/A280 ratio. We recommend using a buffered solution with a slightly alkaline pH, such as TE (pH 8.0), as a diluent (and as a blank) to assure accurate and reproducible readings. An example of the variation in A260/A280 ratio at different pH values is shown in Figure 2. 

    • Make sure your RNA dilution is within the linear range of your spectrophotometer. Usually absorbance values should fall between 0.1 and 1.0. Solutions that are outside this range cannot be measured accurately. Generally the greatest error occurs at lower concentrations.

    Because an A260 of 0.1 corresponds to ~4 μg/ml RNA, it is often impractical to use UV spectroscopy to quantitate RNA isolated from small samples that will have lower concentrations once diluted. Fortunately, there are alternative methods for accurately quantitating small amounts of RNA - two are described below.

    Fluorescent Dyes 
    Certain fluorescent dyes, such as RiboGreen? (Molecular Probes), exhibit a large fluorescence enhancement when bound to nucleic acids. As little as 1 ng/ml of RNA can be detected and quantitated using RiboGreen with a standard fluorometer, fluorescence microplate reader, or filter fluorometer.

    To accurately quantitate RNA, unknowns are plotted against a standard curve produced with a sample of known concentration, usually based on its absorbance at 260 nm. The linear range of quantitation with RiboGreen can extend three orders of magnitude (1 ng/ml to 1 μg/ml) when two different dye concentrations are used. Furthermore RiboGreen? assays are relatively insensitive to non-nucleic acid contaminants commonly found in nucleic acid preparations, so that linearity is maintained.

    Tips for Optimizing Performance

    • Because RiboGreen does not discriminate between RNA and DNA, it is advisable to treat RNA samples with RNase-free DNase to remove contaminating DNA. 

    • The RiboGreen reagent can adsorb to the sides of tubes. This can be minimized by preparing solutions in non-stick, nuclease-free polypropylene plasticware. 

    • Protect the RiboGreen reagent from photodegradation by wrapping the container with foil and use the reagent within several hours of preparation. 

    • Avoid repeated freeze-thaw cycles of RNA standards. This can cause strand-scission of the RNA, resulting in decreased dye binding. In addition, nucleic acids can adsorb to tubes with repeated freeze-thaw cycles. This phenomenon becomes more pronounced at lower concentrations.

    Agilent 2100 Bioanalyzer 
    The Agilent 2100 bioanalyzer uses a combination of microfluidics, capillary electrophoresis, and fluorescent dye that binds to nucleic acid to evaluate both RNA concentration and integrity. An RNA reference standard (the RNA 6000 Ladder Cat# 7152; Ambion) and a microfluidics chip (The RNA Lab Chip; Agilent Technologies) are also required. The RNA 6000 Ladder is composed of six RNAs ranging in size from 0.2-6 kb. The ladder and samples are loaded in designated wells on the RNA Lab Chip. Size and mass information is provided by the fluorescence of RNA molecules as they move through the channels of the chip. The instrument software automatically compares the peak areas from unknown RNA samples to the combined area of the six RNA 6000 Ladder RNA peaks to determine the concentration of the unknown samples. The RNA 6000 Nano System has a broad dynamic range and can quantitate between 25-500 ng/ml of RNA with a covariance of ~10%.

    Perhaps the most powerful feature of the Agilent 2100 bioanalyzer is its ability to provide information about RNA integrity. As each RNA sample is analyzed, the software generates both a gel-like image and an electropherogram (Figure 3). When analyzing total RNA, the areas under the 18S and 28S ribosomal RNA peaks are used to calculate the ratio of these two major ribosomal RNA species and these data are displayed along with quantitation data on individual electropherograms (Figure 3a). Significant changes in the ratios of the 18S and 28S ribosomal RNA peaks are indicative of degraded RNA.

     

    Figure 3. Agilent 2100 Bioanalyzer Electropherograms of RNA Samples. A. Electropherogram of a Total RNA Sample. Total RNA (100 ng) was analyzed on an Agilent 2100 bioanalyzer. The resulting electropherogram shows the characteristic signature of a high quality total RNA sample. B. Electropherogram of Amplified aRNA Sample. Total RNA 2 μg corresponding to 60 ng mRNA) was amplified using the MessageAmp aRNA Kit (Ambion Cat# 1750) resulting in (90 μg aRNA, a 1500 fold amplification. The aRNA (900 ng) was analyzed on an Agilent 2100 bioanalyzer. The resulting electropherogram shows the classic output of a high quality aRNA sample.

    In addition to its usefulness for analysis of total RNA, the bioanalyzer is also a superior tool for analyzing mRNA and amplified aRNA (antisense RNA) integrity. Intact mRNA and aRNA profiles consist of a broad distribution of signal, with the bulk of the RNA usually falling between 1 and 2 kb, though this will vary from tissue to tissue (Figure 3b). A significant shift of the profile towards lower molecular weights is indicative of poor RNA integrity.

    Tips for Optimizing Performance

    • The area of the peaks derived from the RNA 6000 Ladder is used as a mass standard for unknowns, so accurate quantitation of your unknowns is dependent on careful handling of this standard. We recommend that the RNA 6000 Ladder be thoroughly mixed and carefully pipetted to reduce error. For best performance, the standard should be aliquoted into non-stick, nuclease-free tubes to avoid multiple freeze-thaw cycles of a single stock tube. 

    • Quantitation is affected by ionic strength of the sample, which can quench fluorescence in RNA samples. Therefore, when possible, RNA should be suspended in nuclease-free water to minimize differences between the RNA 6000 Ladder and the sample to be measured. If this is not possible, be aware that the unknown concentration may be underestimated. 

    • Generally, we find that some 23S and 28S rRNAs do not migrate according to their molecular weights. For example, mammalian 28S rRNA, 4.8 kb in length, consistently migrates just ahead of the 4 kb peak in the RNA 6000 Ladder. This is likely due to 
      the highly structured nature of 23S and 28S rRNAs. 

    • Although this assay has a broad linear range (~25 ng-500 ng) overloading the chip with RNA can affect performance of the RNA Lab Chip. For consistent results, we recommend loading 50 ng-250 ng of RNA. 

    • The fluorescent dye is light sensitive, so store dye concentrate and working solutions away from light; e.g. wrap tubes in foil. 

    • Follow the manufacturer's recommendations for maintenance of the electrodes and the priming station. Poor Lab Chip Loading (priming) and formation of salt bridges between electrodes are common causes of poor assay performance.


    相關文章

    化學家首次實現RNA與氨基酸連接

    據27日《自然》雜志報道,英國倫敦大學學院(UCL)化學家通過模擬早期地球的條件,首次實現了RNA與氨基酸的化學連接。這一難題自20世紀70年代以來一直困擾著科學家,如今,這一突破性成果為解答生命起源......

    新活檢方法用RNA識別早期癌癥

    美國芝加哥大學團隊開發了一種更為靈敏的液體活檢技術,該方法利用RNA而不是傳統的DNA來檢測癌癥。這一創新方法在使用患者血液樣本進行測試時,識別出早期結直腸癌的準確率達到95%,顯著優于現有的非侵入性......

    重大突破!新加坡發布長讀長RNA測序數據集SGNEx

    由新加坡科技研究局基因組研究所領導的科學家團隊,發布了迄今全球最大、最全面的長讀長RNA測序數據集之一——新加坡納米孔表達數據集(SG-NEx)。這一成果有望解決疾病研究中長期存在的技術瓶頸,使研究人......

    RNA技術研發與產業化項目獲大學生創業基金資助

    4月15日,中國工程院院士、中國科學院亞熱帶農業生態研究所首席研究員印遇龍領銜的單胃動物營養研究團隊在科技合作和成果轉化上取得新進展。其團隊博士生王芳以“RNA技術研發與產業化應用”為主的項目,歷經初......

    學者開發MIRROR提高RNA編輯效率

    近日,中山大學生命科學學院教授張銳團隊首次提出名為MIRROR的全新內源性ADAR招募gRNA設計理念,顯著提高了RNA編輯效率,這一突破為RNA編輯技術走向臨床應用注入了強勁動力,同時也為相關疾病的......

    科研人員發展環形RNA適配體技術為治療阿爾茨海默病提供新策略

    中國科學院分子細胞科學卓越創新中心陳玲玲研究組揭示了雙鏈RNA依賴的蛋白激酶R(PKR)在阿爾茨海默病(AD)發生與進展過程中異常激活的分子病理特征,開發了基于具有分子內短雙鏈結構環形RNA(ds-c......

    華山醫院檢驗科:發現新型RNA靶點,探索抗癌新策略

    在癌癥治療領域,化療藥物耐藥性問題一直是阻礙治療效果提升的關鍵瓶頸。癌細胞擁有多種復雜的機制,能夠巧妙地逃避化療藥物的“攻擊”,其中,高活性的抗氧化系統可以有效減輕藥物誘導的活性氧(ROS)損傷,成為......

    DNA與RNA能協同互補調控基因表達

    比利時布魯塞爾自由大學主導的一項研究揭示,DNA和RNA的表觀遺傳學協同調控比過去想象的更加緊密。這項發表在最新一期《細胞》雜志上的研究,結合了DNA和RNA研究結果,指出這兩種調控方式共同作用,形成......

    學者發布RNA三維結構預測評估研究成果

    近日,廣州醫科大學-中國科學院廣州生物醫藥與健康研究院聯合生命科學學院特聘教授、廣州實驗室研究員苗智超團隊與合作者,對來自全球18個團隊的預測進行了大規模評估,涉及23個RNA結構,包括RNA元件、適......

    新成像法能對大腦進行三維RNA分析

    瑞典卡羅琳斯卡醫學院等機構研究人員開發出一種突破性的顯微鏡方法,能夠以細胞級分辨率對完整的小鼠大腦進行詳細的三維RNA分析。發表在最新一期《科學》雜志上的這種名為TRISCO的新方法,有可能改變人們對......

  • <option id="immmk"></option>
  • <noscript id="immmk"><kbd id="immmk"></kbd></noscript>
    伊人久久大香线蕉综合影院首页