• <option id="immmk"></option>
  • <noscript id="immmk"><kbd id="immmk"></kbd></noscript>
    發布時間:2024-09-28 14:03 原文鏈接: 石墨烯控制技術能消滅99.9%表面細菌

    科技日報訊(記者張佳欣)石墨烯以其強大的殺菌性能,有望成為抗擊耐藥細菌領域的顛覆性技術。瑞典查爾姆斯理工大學研究人員利用普通冰箱貼中的磁鐵技術,研發出一種超薄的針刺狀表面,作為導管和植入物的涂層,可殺死醫療設備表面99.9%的細菌。相關論文發表在近日出版的《先進功能材料》雜志上。

    醫源性感染是全球普遍存在的問題,給患者帶來巨大痛苦,導致高昂的醫療費用,并增加了抗生素耐藥性的風險。大多數醫源性感染與各種醫療產品的使用有關,如導管、髖關節假體、膝關節假體和牙科植入物,細菌能通過這些醫療設備表面進入人體。

    研究團隊此前已經證明,垂直排列的石墨烯薄片可防止細菌附著在基材上,薄片可將細菌切割成碎片并殺死。但是,他們一直無法控制石墨烯薄片的取向方向,因此無法將材料應用于醫療設備表面。

    現在,研究團隊找到一種方法,可在多個不同方向上以非常高的取向一致性來控制石墨烯的效果。這種新的取向方法能將石墨烯納米片整合到醫用設備表面,可殺死99.9%的細菌,為制造醫療石墨烯殺菌設備提供了可能性。

    通過以圓形排列方式布置磁體,使陣列內的磁場排列成直線方向,研究人員成功誘導石墨烯均勻取向,并在任何形狀的表面上都達到了極高的殺菌效果。這一方法被稱為“海爾巴赫陣列”,意味著在磁體陣列內部,磁場得到加強并變得均勻,而在另一側則減弱,從而實現了石墨烯的強單向取向。這種技術與冰箱貼中的磁鐵技術相似。

    研究人員還表示,這種新技術在電池、超級電容器、傳感器和耐用防水包裝材料等領域也有巨大的應用潛力。


    相關文章

    細菌餓急了會先吃“鄰居”?

    在顯微鏡下的微觀世界里,那些我們肉眼看不到的小生命,每天都上演著驚心動魄的“饑餓游戲”。最近,美國亞利桑那州立大學、瑞士蘇黎世聯邦理工學院以及瑞士聯邦水科學與技術研究所組成的國際科研團隊,發現了一種令......

    細菌會搭“順風車”快速移動

    在微觀世界里,微生物會爭奪地盤、向敵人噴射化學物質,有時還會利用微觀地形來獲得優勢。一項研究發現,細菌可以利用鄰近酵母細胞形成的液體小囊加速移動。這些微觀的水分痕跡使細菌能夠游得更遠、傳播得更快,揭示......

    新材料兼具超導性和拓撲電子結構

    美國萊斯大學科學家領銜的團隊在材料領域取得一項突破性進展。他們通過向二硫化鉭(TaS2)中摻入微量銦元素,制備出具有特殊電子結構的“克萊默節點線”金屬。這項發表于最新一期《自然·通訊》雜志的研究,為開......

    首個速度達拍赫茲光電晶體管問世

    在一項具有開創性意義的國際合作研究中,美國亞利桑那大學研究團隊展示了一種利用持續時間不到萬億分之一秒的超快光脈沖來操縱石墨烯中電子的方法。通過量子隧穿效應,他們記錄到了電子幾乎瞬間繞過物理屏障的現象,......

    洗衣機可能無法清除潛在有害細菌

    研究人員發現,即使使用60℃高溫水洗程序清洗衣物,洗衣機仍無法清除潛在有害細菌,這一發現可能與抗生素耐藥性上升有關。近日,PLoSOne發表的一項研究表明,受污染的織物可能成為持續數周的感染源,但研究......

    科研人員研發出新型仿生離子篩分材料

    自然界中,生物離子通道能夠精準篩分離子。這激發了研究人員構筑仿生離子篩分材料的靈感。這些材料可以分離一種陽離子跟其他陽離子,也能夠將一種陰離子跟其他陰離子分開,廣泛應用于化工和環境領域。用于分離陽離子......

    科研人員研發出高各向異性導熱石墨烯復合材料實現光電熱協同控冰

    中國科學院合肥物質科學研究院固體物理研究所王振洋團隊根據“3D打印結構設計-激光界面工程-跨尺度性能調控”設計思路,開發出具有高各向異性導熱比、高光熱/電熱轉換效率兼具良好疏水性和機械性能的石墨烯/聚......

    我國科學家在高密度介電儲能領域取得新突破

    記者從南京航空航天大學獲悉,該校李偉偉教授與清華大學南策文院士等共同研制出一種新型介電儲能材料,其能量密度是主流商用介電儲能材料的數十至數百倍,有望成為下一代高功率脈沖技術的核心器件。國際頂級學術期刊......

    重大突破!我國科學家成功提升金屬材料在長期使用中的抗疲勞能力

    金屬材料在長期使用過程中產生的疲勞失效是威脅重大工程安全的隱形殺手。經過多年攻關,我國科學家日前破解了這一難題,成功讓金屬材料在保持高強度、高塑性的同時,還大幅提升了抗疲勞能力。這一成果北京時間4日凌......

    多種材料利用濕度變化實現空氣捕碳

    有多種成本低且儲量豐富的材料,可利用濕度變化,直接從空氣中捕碳。圖片來源:美國西北大學美國西北大學科學家開展的一項最新研究表明,有多種成本低且儲量豐富的材料,可利用濕度變化,直接從空氣中捕碳。他們稱之......

  • <option id="immmk"></option>
  • <noscript id="immmk"><kbd id="immmk"></kbd></noscript>
    伊人久久大香线蕉综合影院首页