[1]Feinberg AP. The Key Role of Epigenetics in Human Disease Prevention and Mitigation. N Engl J Med. 2018, 378(14): 1323-1334.
[2]Brocken DJW, Tark-Dame M, Dame RT. dCas9: A Versatile Tool for Epigenome Editing. Curr Issues Mol Biol. 2018, 26:15-32.
[3]Thakore PI, D'Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi
AM, Reddy TE, Crawford GE, Gers-bach CA. Highly specific epigenome
editing by CRISPRCas9 repressors for silencing of distal regulatory
ele-ments. Nat Methods, 2015, 12: 1143-1149.
[4]Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE,
Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman
JS, Qi LS. CRISPR-mediated modular RNA-guided regulation of
tran-scription in eukaryotes. Cell, 2013, 154(2): 442-451.
[5]Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR
RNA-guided activation of endogenous human genes. Nat Methods, 2013,
10(10): 977-979.
[6]Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM,
Polstein LR, Thakore PI, Glass KA, Oust-erout DG, Leong KW, Guilak F,
Crawford GE, Reddy TE, Gersbach CA. RNA-guided gene activation by
CRISPR-Cas9- based transcription factors. Nat Methods, 2013, 10(10):
973-976.
[7]Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, P R Iyer E, Lin
S, Kiani S, Guzman CD, Wiegand DJ, Ter-Ovanesyan D, Braff JL, Davidsohn
N, Housden BE, Perrimon N, Weiss R, Aach J, Collins JJ, Church GM.
Highly efficient Cas9-mediated transcriptional programming. Nat Methods,
2015, 12(4): 326-328.
[8]Li Z, Zhang D, Xiong X, Yan B, Xie W, Sheen J, Li JF. A potent
Cas9-derived gene activator for plant and mammalian cells. Nat Plants,
2017, 3(12): 930-936.
[9]Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D,
Young RA, Jaenisch R. Editing DNA methylation in the mammalian genome.
Cell, 2016, 167(1): 233-247.
[10]Liu P, Chen M, Liu Y, Qi LS, Ding S. CRISPR-based chromatin
remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to
pluripotency. Cell Stem Cell, 2018, 22(2): 252-261.
[11]Cano-Rodriguez D, Gjaltema RA, Jilderda LJ, Jellema P,
Dokter-Fokkens J, Ruiters MH, Rots MG. Writing of H3K4Me3 overcomes
epigenetic silencing in a sustained but context-dependent manner. Nat
Commun, 2016, 7: 12284.
[12]Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ, Garber M,
Maehr R. Functional annotation of native enhancers with a Cas9-histone
demethylase fusion. Nat Methods, 2015, 12(5): 401-403.
[13]Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE,
Reddy TE, Gersbach CA. Epigenome editing by a CRISPR-Cas9-based
acetyltransferase activates genes from promoters and enhancers. Nat
Biotechnol, 2015, 33(5): 510-517.
[14]Kwon DY, Zhao YT, Lamonica JM, Zhou Z. Locus specific histone
deacetylation using a synthetic CRISPRCas9-based HDAC. Nat Commun, 2017,
8: 15315.
[15]Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, Joung JK,
Bernstein BE. Locus-specific editing of histone modifications at
endogenous enhancers. Nat Biotechnol, 2013, 31(12): 1133-1136.
[16]Liao HK, Hatanaka F, Araoka T, Reddy P, Wu MZ, Sui Y, Yamauchi T,
Sakurai M, O'Keefe DD, Nú?ez-Delicado E, Guillen P, Campistol JM, Wu
CJ, Lu LF, Esteban CR, Izpisua Belmonte JC. In vivo target gene
activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell,
2017, 171(7): 1495-1507.
[17]Zhou H, Liu J, Zhou C, Gao N, Rao Z, Li H, Hu X, Li C, Yao X,
Shen X, Sun Y, Wei Y, Liu F, Ying W, Zhang J, Tang C, Zhang X, Xu H, Shi
L, Cheng L, Huang P, Yang H. In vivo simultaneous transcriptional
activation of multiple genes in the brain using CRISPR-dCas9-activator
transgenic mice. Nat Neurosci, 2018, 21(3): 40-446.
[18]Matharu N, Rattanasopha S, Tamura S, Maliskova L, Wang Y, Bernard
A, Hardin A, Eckalbar WL, Vaisse C, Ahituv N. CRISPR-mediated
activation of a promoter or enhancer rescues obesity caused by
haploinsufficiency. Science, 2018.
[19]Xu Y, Wu F, Tan L, Kong L, Xiong L, Deng J, Barbera AJ, Zheng L,
Zhang H, Huang S, Min J, Nicholson T, Chen T, Xu G, Shi Y, Zhang K, Shi
YG. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1
hydroxylase in mouse embryonic stem cells. Mol Cell, 2011, 42(4):
451-464.
[20]Hayashi ML, Rao BS, Seo JS, Choi HS, Dolan BM, Choi SY, Chattarji
S, Tonegawa S. Rescue of Fragile X Syndrome Neurons by DNA Methylation
Editing of the FMR1 Gene. Cell, 2018, 172(5): 979-992.e6.
[21]Lau CH, Suh Y. In vivo epigenome editing and transcriptional
modulation using CRISPR technology. Transgenic Res. 2018, 27(6):489-509.