[1] Keer J T , Birch L. Essentials of Nucleic Acid Analysis: A Robust Approach. London: Royal Society of Chemistry, 2008
[2] Zhang C, Xing D. Single-molecule DNA amplification and analysis using microfluidics.Chem Rev, 2010, 110 (8): 4910-4947
[3] Vogelstein B, Kinzler K W. Digital PCR. Proc Natl Acad Sci USA,1999,96(16): 9236-9241
[4] Bhat S, Herrmann J, Armishaw P, et al.
Single molecule detection in nanofluidic digital array enables accurate
measurement of DNA copy number. Anal Bioanal Chem, 2009, 394(2):
457-467
[5] Bustin S A, Benes V, Garson J A, et al.
The MIQE guidelines: minimum information for publication of
quantitative real-time PCR experiments. Clin Chem , 2009, 55 (4 ):
611-622
[6] Burns M, Burrell A, Foy C. The applicability
of digital PCR for the assessment of detection limits in GMO analysis.
European Food Research and Technology, 2010, 231 (3 ): 353-362
[7] Sykes P J , Neoh S H , Brisco M J, et al. Quantitation of targets for PCR by use of limiting dilution. Biotechniques, 1992,13(3): 444
[8] Olga K, Irina L, James B, et al. Nanoliter scale PCR with TaqMan detection. Nucleic Acids Res, 1997,25 (10 ): 1999-2004
[9] Devin D, Hai Y, Giovanni T, et al.
Transforming single DNA molecules into fluorescent magnetic particles
for detection and enumeration of genetic variations . Proc Natl Acad Sci
USA, 2003,100 (15): 8817-8822
[10] Diehl F, Li M, Dressman D, et al.
Detection and quantification of mutations in the plasma of patients with
colorectal tumors. Proc Natl Acad Sci USA, 2005, 102 (45): 16368-16373
[11] Frank D, Meng L, Yiping H, et al. BEA Ming: single-molecule PCR on micro particles in water-in-oil emulsions. Nat Methods, 2006, 3 (7): 551-559
[12] Liu J , Hansen C, Quake S R. Solving the "
world-to-chip" in terface problem with a microfluidic matrix. Anal
Chem,2003, 75(18): 4718-4723
[13] Dube S, Qin J , Ramakrishnan R. Mathematic
alanalysis of copy number variation in a DNA sample using digital PCR on
a nanofluidic device. PLoS One , 2008, 3 (8): e2876
[14] Heyries K A, Carolina T, Michael C, et al. Megapixel digital PCR. Nat Methods, 2011,8 (8): 649-651
[15] Sanders R, Jim F, Huggett, et al. Evaluation of digital PCR for absolute DNA quantification. Anal Chem, 2011, 83(17): 6474-6484
[16] Heid C A, Stevens J, Livak K L, e t al. Real time quantitative PCR. Genome Res, 1996, 6 (10): 986-994
[17] Morrison T B, Weis J J, Wittwer C T.
Quantification of low-copy transcripts by continuous SYBR Green I
monitoring during amplification. Biotechniques, 1998, 24(6): 954-958 ,
960 , 962
[18] 趙錦榮, 白玉杰, 王勝春, 等.新型MGB探針在沙眼衣原體實時PCR檢測中的應用. 生物化學與生物物理進展, 2003, 30(3): 466– 470 Zhao J R, Bai Y J , Wang S C, et al. Prog Biochem Biophys, 2003,30(3): 466-470
[19] Corbisier P, Somanath B, Lina P, et al. Absolute quantification of genetically modified MO N810 maize(Zea mays L.) by digital polymerase chain reaction.Anal Bioanal Chem, 2009, 396 (6):2143-2150
[20] Terry C F, Shanahan D J , Ballam L D, et al.
Real-time detection of genetically modified soya using Lightcycler and
ABI 7700 platforms with TaqMan , Scorpion, and SYBR GreenⅠ chemistries. J
AOAC international, 2002, 85 (4): 938- 944
[21] Pohl G, Shih I M. Principle and applications of digital PCR. Expert Re v Mo l Di agn , 2 00 4, 4(1 ): 41- 47
[22] Oehler V G, Qin J, Ramakrishnan R, et al.
Absolute quantitative detection of ABL tyrosine kinase domain point
mutations in chronic myeloid leukemia using a novel nanofluidic platform
and mutation-specific PCR. Leukemia, 2008, 23(2): 396-399
[23] Chan M, Mei W C, Ting W L, et al .
Evaluation of nanofluidics technology for high-through put SNP
genotyping in a clinical setting. J Mol Diagn, 2011, 13 (3): 305-312
[24] Ropers H H. New perspectives for the e lucidation of genetic disorders . Am J Hum Genet,2007, 81(2 ): 199-207
[25] Lupski J R. Genomic rearrangements and sporadic disease. Nat
Genet, 2007, 39: S43-S47
[26] Slamon D J, Clark G M , Wong S G, et al
. Human breast cancer:correlation of relapse and survival with
amplification of the HER-2 /neu oncogene .Science, 1987, 235 (4785): 177
[27] Qin J, Jones R C, Ramakrishnan R. Studying
copy number variations using a nanofluidic platform. Nucleic Acids Res,
2008,36 (18): e116
[28] Lo Y M D. Noninvasive prenatal detection of
fetal chromosomal aneuploidies by maternal plasman ucleic acid
analysis: a review of the current state of the art. BJOG: An
International J Obstetrics&Gynaecology, 2009, 116 (2): 152-157
[29] Lo Y M D, Fiona M F, Chan K C A, et al. Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proc Natl Acad Sci USA, 2007, 104(32): 13116 -13121
[30] Fan H C, Quake S R. Detection of aneuploidy with digital polymerase chain reaction. Anal Chem, 2007, 79 (19): 7576-7579
[31] Lo Y M, Nancy B Y T , Rossa W K C, et al.
Plasma placental RNA allelic ratio permits noninvasive prenatal
chromosomal aneuploidy detection. Nat Med , 2007, 13 (2): 218-223
[32] Lun F M, Allen C K, Yeung L T, et al.
Microfluidics digital PCR reveals a higher than expected fraction of
fetal DNA in maternal plasma. Clin Chem, 2008, 54(10): 1664-1672
Guo Q W, Zhou Y L. Chin J Birth Health & Hered, 2010, 18(4):137-139
[34] BioMark. BioMark Advanced Development
Protocol 10. Absolute quantitation using the digital array; Fluidigm
(Fluidigm Corporation, S.F)
[35] White A K, Michael V,Oleh I P, et al. High-through put micro fluidic single-cell RT-qPCR. Proc Natl Acad Sci USA, 2011,108(34): 13999-14004
[36] Spurgeon S L, Jones R C, Ramakrishnan R.
High throughput gene expression measurement with real time PCR in a
microfluidic dynamic array. PLoS One , 2008, 3(2): e1662
[37]Warren L,David B, Irving L W ,et al.Transcription
factor profiling in individual hematopoietic progenitors by digital
RT-PCR. Proc Natl Acad Sci USA , 2006,103(47):17807-1 7812
[38] Guo G , Huss M, Tong G Q, et al.
Resolution of cell fated ecisions revealed by single-cell gene
expression an alysis from zygote to blastocyst. Dev Cell , 2011,18 (4):
675-685
[39] Ottesen E A , Jong W H, Stephen R Q, et al. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria.Science ,2006,314 (5804): 1464-1467
[40] Tadmor A D, Elizabeth A O , Jared R L, et al. Probing in dividual environmental bacteria for viruses by using microfluidic digital PCR. Science, 2011,333(6038): 58-62
[41] Braslavsky I, Hebert B, Kartalov E, et al. Sequence information can be obtained from single DNA molecules. Proc Natl Acad Sci USA,2003, 100 (7): 3960-39 64
[42] Eid J, Fehr A, Gray J, et al. Real-time DN A sequencing from single polymerase molecules . Science, 2009, 323 (5910): 133-138
[43] Harris T D, Buzby P R, Babcock H, et al. Single-molecule DNA sequencing of a viral genome. Science, 2008, 320(5872 ): 106 -109
[44] White R A , Blainey P C, Fan H C, et al . Digital PCR provides sensitive and absolute calibration for high throughput sequencing.BMC Genomics, 2009, 10:116
[45] Zernant J , Schubert C, Im K, et al. Analysis of the ABCA4 gene by next-generation sequencing . Invest Ophthalmol Vis Sci, 2011,52(11): 8479-8487
[46] Kim H , Bartsch M S, Renzi R F, et al. Automated digital microfluidic sample preparation for next-generation DNA sequencing. J Lab Autom , 2011, 16(6): 405-414
[47] Jones M A, Bhide S, Chin E, et al.
Targeted polymerase chain reaction-based enrichment and next generation
sequencing for diagnostic testing of congenital disorders of
glycosylation. Genet Med, 2011,13 (11): 921-932