中國科學技術大學潘建偉、陸朝陽、陳明城教授等利用基于自主研發的等離子體躍遷型超導高非簡諧性光學諧振器陣列,實現了光子間的非線性相互作用,并進一步在此系統中構建出作用于光子的等效磁場以構造人工規范場,在國際上首次實現了光子的分數量子反常霍爾態。這是利用“自底而上”的量子模擬方法進行量子物態和量子計算研究的重要進展。相關成果以長文形式于北京時間5月3日發表在國際學術期刊《科學》上。
什么是霍爾效應和反常霍爾效應
霍爾效應是指當電流通過置于磁場中的材料時,電子受到洛倫茲力的作用,在材料內部產生垂直于電流和磁場方向的電壓。這個效應由美國科學家霍爾在1879年發現,并被廣泛應用于電磁感測領域。1980年,德國科學家馮·克利欽發現在極低溫和強磁場條件下,霍爾效應出現整數量子化的電導率平臺。這一新現象超出了經典物理學的描述,被稱為整數量子霍爾效應,它為精確測量電阻提供了標準。1981年,美籍華裔科學家崔琦和德國科學家施特默發現了分數量子霍爾效應。整數和分數量子霍爾效應的發現分別獲得1985年和1998年諾貝爾物理學獎。
反常霍爾效應是指無需外部磁場的情況下觀測到相關效應。2013年,中國研究團隊觀測到整數量子反常霍爾效應。2023年,美國和中國的研究團隊分別獨立在雙層轉角碲化鉬中觀測到分數量子反常霍爾效應。
傳統的量子霍爾效應實驗研究采用“自頂而下”的方式,即在特定材料的基礎上,利用該材料已有的結構和性質實現制備量子霍爾態。通常情況下,需要極低溫環境、極高的二維材料純凈度和極強的磁場,對實驗要求較為苛刻。此外,傳統“自頂而下”的方法難以對系統微觀量子態進行單點位獨立地操控和測量,一定程度上限制了其在量子信息科學中的應用。
與之相對地,人工搭建的量子系統結構清晰,靈活可控,是一種“自底而上”研究復雜量子物態的新范式。其優勢包括:無需外磁場,通過變換耦合形式即可構造出等效人工規范場;通過對系統進行高精度可尋址的操控,可實現對高集成度量子系統微觀性質的全面測量,并加以進一步可控的利用。這類技術被稱為量子模擬,是“第二次量子革命”的重要內容,有望在近期應用于模擬經典計算困難的量子系統并達到“量子計算優越性”。
此前,國際上已經基于其開展了一些合成拓撲物態、研究拓撲性質的量子模擬工作。然而,由于以往系統中耦合形式和非線性強度的限制,人們一直未能在二維晶格中為光子構建人工規范場。
“在科學和技術上都是一項杰出的成就”
為解決這一重大挑戰,研究團隊在國際上自主研發并命名了一種新型超導量子比特等離子體躍遷型,打破了目前主流的傳輸子型量子比特相干性與非簡諧性之間的制約,用更高的非簡諧性提供了光子間更強的排斥作用。進一步,團隊通過交流耦合的方式構造出作用于光子的等效磁場,使光子繞晶格的流動可積累貝里相位,解決了實現光子分數量子反常霍爾效應的兩個關鍵難題。同時,這樣的人造系統具有可尋址、單點位獨立控制和讀取,以及可編程性強的優勢,為實驗觀測和操縱提供了新的手段。
在該項工作中,研究人員觀測到了分數量子霍爾態獨有的拓撲關聯性質,驗證了該系統的分數霍爾電導。同時,他們通過引入局域勢場的方法,跟蹤了準粒子的產生過程,證實了準粒子的不可壓縮性質。
《科學》雜志審稿人高度評價這一工作,認為這一工作“是利用相互作用光子進行量子模擬的重大進展”“一種新穎的局域單點控制和自底而上的途徑”“有潛力為實現非阿貝爾拓撲態開辟一條新的途徑,這是利用二維電子氣材料的傳統方法很難探測的”。
諾貝爾物理學獎得主弗朗克·維爾切克評價,這種“自底而上”、用人造原子構建哈密頓量的途徑是一個“非常有前途的想法”,這是一個令人印象深刻的實驗,為基于任意子的量子信息處理邁出了重要一步。沃爾夫獎獲得者彼得·佐勒評價,“這在科學和技術上都是一項杰出的成就”“實現這樣的目標是多年來全球頂級實驗室競爭的量子模擬的圣杯之一”。
磁重聯是等離子體中磁能快速釋放和粒子加熱加速的關鍵過程,廣泛存在于太陽耀斑、地球磁尾、黑洞噴流、伽馬暴乃至聚變裝置等多種等離子體環境中。當磁場強度達到極端水平時,電子在重聯過程中將進入輻射主導區域,此......
理論預言,在宇宙大爆炸后百萬分之一秒內,核子尚未形成,物質處于由自由夸克和膠子組成的熾熱“濃湯”狀態。這種物質形態被稱為夸克膠子等離子體。尋找夸克膠子等離子體存在的證據,對探討宇宙演化具有重要意義。長......
據最新一期《科學》雜志報道,美國哈佛大學研究人員開發出一種新型光學器件,即“超表面”,可在單一的平面上完成復雜量子操作。超表面可同時承擔多種傳統光學元件功能,解決了光子量子信息處理領域長期存在的體積龐......
磁重聯是等離子體中磁能快速釋放和粒子加熱加速的關鍵過程,廣泛存在于太陽耀斑、地球磁尾、黑洞噴流、伽馬暴乃至聚變裝置等多種等離子體環境中。當磁場強度達到極端水平(約1010G)時,電子在重聯過程中將不可......
南京大學多接收等離子體質譜儀招標項目的潛在投標人應在南京市鼓樓區中山路99號12樓1212室獲取招標文件,并于2025年07月28日09點30分(北京時間)前遞交投標文件。一、項目基本情況項目編號:G......
4月30日,上海市疾病預防控制中心(以下簡稱“上海疾控”)發布了兩臺ICP-MS的采購項目結果公告,兩臺產品分別為:液相色譜-電感耦合等離子體質譜聯用儀(LC-ICPMS),和全自動消解ICPMS,中......
2月22日,由中國電工技術學會主辦,深圳理工大學、中國科學院深圳先進技術研究院、深圳市光明區人民醫院、國家高性能醫療器械創新中心聯合承辦的第二屆全國等離子體生物醫學學術會議在深圳光明天安云谷國際會議中......
小環徑比球形托卡馬克(SMART)裝置首次成功產生了托卡馬克等離子體。這一進展使通過受控核聚變反應實現可持續、清潔且幾乎無限的能源又近了一步。該研究成果發表在新一期《核聚變》雜志上。SMART是由西班......
1月3日,記者從中國科學院合肥物質科學研究院等離子體所獲悉,由該所建設運行的國家重大科技基礎設施“聚變堆主機關鍵系統”近日取得新進展,其子系統“聚變工程堆中心螺管系統”完成首輪測試實驗,最大測試電流達......
2024年11月18-20日,第十二屆慕尼黑上海分析生化展(analyticaChina2024)在上海新國際博覽中心盛大舉行。此次展會匯聚了全球1200多家優質企業,共同展現最新科技創新成果與行業發......